首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.  相似文献   

2.
Extra-cellular polysaccharides (EPS), soluble microbiological products (SMP), dispersed bacterial cells, and a well-characterized natural organic matter (NOM) isolate were observed to determine their influence on the flux decline of model nanofiltration membrane systems. Biofouling tests were conducted using bench-scale, flat-sheet membrane modules, fed with particle-free (laboratory) waters and natural waters, some of which were augmented with readily biodegradable organic carbon. The modules were operated 6.7 x 10(5) Pa, and 21+/- 2 degrees C. Membrane flux-decline was associated with increases in surface EPS mass: between 30 and 80% of normalized flux decline occurred when membrane-associated EPS content increased from 5to 50 microg/ cm2. As judged by standard culturing, heterotrophic cell densities recovered from membrane biofilm samples showed no significant correlations with the different carbon sources present in the feedwaters, or flux decline rates. Results suggested that, in the absence of microbiological activity, SMP and NOM have intrinsic membrane fouling properties at levels that are operationally significant to commercial-scale membrane treatment practices. Results also suggested that SMP may have a biofouling potential significantly greater than some types of NOM. Trends obtained relating these compounds with flux decline were successfully described by expanding existing resistance-in-series models.  相似文献   

3.
Dialysis experiments with arsenate and three different NOM samples amended with Fe(lll) showed evidence confirming the formation of aquatic arsenate-Fe(Ill)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(lll) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(lll)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(lll) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(Ill)-NOM associations are at least partially colloidal in nature.  相似文献   

4.
In this study, changes in the physical and structural properties of natural organic matter (NOM) during titanium dioxide photocatalytic oxidation process were investigated using several complementary analytical techniques. Potential of the treated water to form trihalomethanes (THMs) and haloacetic acids (HAAs) was also studied. High-performance size exclusion chromatography analysis showed that NOM with apparent molecular weights of 1-4 kDa were preferentially degraded, leading to the formation of lower molecular weight organic compounds. Resin fractionation of the treated water demonstrated that the photocatalytic oxidation changed the affinity of the bulk organic character from predominantly hydrophobic to more hydrophilic. Short chain aldehydes and ketones were identified by mass spectroscopy as one of the key degradation products. The addition of hydrogen peroxide to photocatalysis was found to increase the degradation kinetics but did not affect the reaction pathway, thus producing similar degradation end products. The amount of THMs normalized per dissolved organic carbon (specific THM) formed upon chlorination of NOM treated with photocatalytic oxidation was reduced from 56 to 10 microg/mg. In contrast, the specific HAAs formation potential of the treated water remained relatively unchanged from the initial value of 38 microg/mg, which could be due to the presence of hydrophilic precursor compounds that were formed as a result of the photocatalytic oxidation process.  相似文献   

5.
Experiments with immobilized lead dioxide showed that this solid was reduced by natural organic matter (NOM) isolated from Potomac River water. Kinetically, the process was slow and occurred throughout many weeks of exposure. The amount of mobilized lead was affected by the concentration of NOM and exposure time but not significantly influenced by the type of NOM used in the experiments. The interactions of NOM with PbO2 were quantified using differential absorbance spectroscopy. It showed that the oxidation of chromophoric groups in NOM was strongly correlated with lead release. Because lead release yields were higher thatthose predicted based on the depletion of the aromatic groups, it is hypothesized that NOM moieties otherthan aromatic functionalities are engaged in the reduction of PbO2 by NOM and/or lead mobilization involves the formation of mixed Pb(II)/Pb(IV) soluble and colloidal species.  相似文献   

6.
Nitrogen-containing disinfection byproducts (N-DBPs) are potentially toxic. This study assessed the formation of three N-DBPs (dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and N-nitrosodimethylamine (NDMA)) and one regulated DBP (chloroform) upon adding free chlorine and monochloramine into solutions containing different fractions (hydrophobic, transphilic, hydrophilic, and colloidal) of dissolved organic matter (DOM) isolates (n=17). We hypothesized that N-DBP formation would increase for organic matter enriched in organic nitrogen. Formation potential tests were conducted with free chlorine or preformed monochloramine. Chloramination formed, on average, 10 times lower chloroform concentrations, but 5 times higher DCAN concentrations, as compared with free chlorine addition. The formation of the two halogenated N-DBPs (DCAN and TCNM) increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased upon adding free chlorine, but the N-DBP formation was relatively constant upon adding monochloramine. NDMA, a nonhalogenated N-DBP, formed on average 0.26 nmol per mg of DOC (4.5 nmol per mg of DON) upon adding monochloramine; no NDMA formation occurred upon adding free chlorine. NDMA formation increased as the DOC/DON ratio decreased (i.e., increasing nitrogen content of DOM). NDMA formation also increased as the amino sugar to aromatic ratio of DOM increased. The results support the hypothesis that DON promotes the formation of N-DBPs.  相似文献   

7.
The rheology of colloidal and noncolloidal food dispersions   总被引:2,自引:1,他引:1  
ABSTRACT:  Rheological data on a food together with data on its composition and structure or microstructure should lead to understanding the interrelationships between them. A number of foods are dispersions of solids in liquids, liquids in liquids, or gas in liquids. The dispersed particles may be colloidal in nature with dimensions < 10 μm, or larger noncolloidal particles (> 10 μm). For both colloidal and noncolloidal dispersions (either in dilute or concentrated regimes), several theoretical equations exist that provide insights into the role of key rheological parameters, such as particle volume fraction and size, interparticle forces, and fractal dimension on their viscosity, yield stress, and modulus. When theoretical models cannot be easily applied to foods with complex structures, structural analysis and structure-based models provide insight into the role of solids loading and interparticle bonding on rheological behavior. In this review, recent studies on colloidal and noncolloidal food dispersions in which theoretical models as well as structural analysis were employed are discussed.  相似文献   

8.
Natural organic matter (NOM) from five water sources was fractionated using XAD resins and ultrafiltration membranes into different groups based on hydrophobicity and molecular weight (MW), respectively. The disinfection byproduct formation from each fraction during chlorination and chloramination was studied. In tests using chlorination, hydrophobic and high MW (e.g., >0.5 kDa) precursors produced more unknown total organic halogen (UTOX) than corresponding hydrophilic and low MW (e.g., <0.5 kDa) precursors. Trihaloacetic acid (THAA) precursors were more hydrophobic than trihalomethane (THM) precursors. The formation of THM and THAA was similar among different fractions for a water with low humic content. Hydrophilic and low MW (<0.5 kDa) NOM fractions gave the highest dihaloacetic acid (DHAA) yields. No significant difference was found for DHAA formation among different NOM fractions during chloramination. Increasing pH from 6 to 9 led to lower TOX formation for hydrophobic and high MW NOM fractions but had little impact on TOX yields from hydrophilic and low MW fractions. Bromine and iodine were more reactive with hydrophilic and low MW precursors as measured by THM or HAA formation than their corresponding hydrophobic and high MW precursors. However, hydrophobic and high MW precursors produced more UTOX when reacting with bromine and iodine.  相似文献   

9.
The surface charges of clean and natural organic matter (NOM)-adsorbed membrane surfaces of two different types of membranes (a UF and a NF membrane composed of the same material but having different pore sizes) were investigated. Concentrated NOM and its fractionated constituents were used as adsorbate and interacting macromolecules nearthe membrane surface. The zeta potential and the acidity of membranes were measured using electrophoresis and potentiometric titration methods, respectively, from the perspective of charge characterization, along with demonstration of ionic strength effects. The membrane surface was also characterized with attenuated total refractive Fourier transform infrared spectra to determine intrinsic functional groups and those changes before and after NOM adsorption. As a comparative study for the electrokinetic property of membrane, the zeta potentials for both examined polymeric membranes were determined by the electrophoresis and the streaming potential measurement methods as functions of ionic strength and the pH of measuring solution. Selectivity tests were performed to decide the relative importance of charge valence of cation in terms of the surface charge of membrane. It was demonstrated that divalent cations (Ca2+, Mg2+) increase zeta potentials relatively compared to monovalent cations (Na+, K+) because divalent cations have a greater potential in approaching membrane surfaces (i.e., inside the Stern layer). Thus, divalent cations can provide a greater double layer compaction and, when near the shear plane (available for both the zeta potential measurement methods), exist to a lesser extent than monovalent cations.  相似文献   

10.
An increasing number of utilities in the United States have been switching from chlorination to chloramination practices to comply with the more stringent trihalomethane (THM) and haloacetic acid (HAA) regulations. This has important implications for disinfection byproduct (DBP) formation because the reactions of chlorine and monochloramine (NH(2)Cl) with natural organic matter (NOM) are not the same. In this study, iodinated trihalomethane (I-THM) formation from preformed NH(2)Cl and prechlorination (at two chlorine doses and contact times) followed by ammonia addition was compared. A representative bromide/iodide ratio of 10:1 was selected and four bromide/iodide levels (ambient, 50/5 or 100/10, 200/20, and 800/80 [μg/L/μg/L]) were evaluated. The results showed that I-THM formation was generally lower for prechlorination as compared to preformed NH(2)Cl due to the oxidation of iodide to iodate by chlorine. However, while prechlorination minimized iodoform (CHI(3)) formation, prechlorination sometimes formed more I-THMs as compared to preformed NH(2)Cl due to a large increase in the formation of brominated I-THM species, which were formed at much smaller amounts from preformed NH(2)Cl. I-THM concentrations and speciation for the two chloramination scenarios (i.e., preformed NH(2)Cl vs prechlorination followed by ammonia) depended on chlorine dose, contact time, bromide/iodide concentration, and NOM characteristics of the source water (SUVA(254)).  相似文献   

11.
The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.  相似文献   

12.
N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.  相似文献   

13.
This study investigated the feasibility of using pulsed electric fields (PEF) to develop biodegradable films from biopolymers (zein, chitosan) and biosynthetic polymers (poly(vinyl alcohol), polyethylene glycol). Various responses including the viscosity, loss modulus, particle size and polydispersity index of the dispersions were determined after PEF processing at various electric field strengths (0.9–3.5 kV/cm), pulse frequencies (50–300 Hz), and specific energies (80–650 kJ/kg). The structure-function relationship between the PEF processed colloidal dispersions, and the effect of PEF on the resulting films was evaluated using the tensile strength, Young's modulus, and erosion index. The viscosity and loss modulus decreased, but the particle size increased at a field strength above 2.4 kV/cm and specific energy below 200 kJ/kg. The films showed higher tensile strength and Young's modulus but low erodibility at a field strength/frequency/specific energy of 2.4 kV/cm/<100 Hz/<100 kJ/kg, respectively. The optimum tensile strength (maximised) (32.89 MPa) and erosion index (minimised) (33.42%) were obtainable at a field strength/frequency/specific energy of 3.4 kV/cm/50 Hz/100 kJ/kg, respectively. The results of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry depicted improvements in the compatibility and nature of intra−/intermolecular interactions between biomacromolecules, as evidenced by the modifications in the morphology, crystallinity and thermal properties. These findings demonstrate the potential of using PEF as a pre-treatment technique during the production of biodegradable films from colloidal dispersions.Industrial relevance.The combinations of PEF processing parameters investigated in this study can be employed to elicit microstructural modifications of colloidal dispersions. PEF-induced effects on colloidal systems can be translated into a functional modification of assembled biological materials (e.g. biodegradable films). The study illustrates possible designs for a PEF process for utilisation of agro-based co-products to meet the demand for eco-friendly materials.  相似文献   

14.
Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.  相似文献   

15.
The size and surface characteristics of a surrogate particle and Cryptosporidium parvum oocysts are important in determining the ability of the particle to mimic the behavior of C. parvum oocysts in filtration and particle transport experiments. The zeta potential, hydrophobicity, and filterability of a surrogate particle, 5 microm carboxylated latex microspheres, and oocysts were compared for a variety of solution conditions. C. pervum oocysts had a slightly negative zeta potential (-1.5 to -12.5 mV) at pH 6.7 over a wide range of calcium concentration (10(-6)-10(-1) M), while the fluorescent microspheres were more negatively charged under the same conditions (-7.4 to -50.2 mV). After exposure to 5 mg of C/L of Suwanee River natural organic matter (NOM), the ; potentials of both particles became significantly more negative, with the microspheres consistently maintaining a more negative zeta potential than the oocysts. Alum was able to neutralize the negative zeta potentials of both particles when in the presence of NOM, but nearly twice the dosage was required for the microspheres. NOM also affected the hydrophobicity of the particles by increasing the hydrophobicity of the relatively hydrophilic oocysts and decreasing the hydrophobicity of the relatively hydrophobic microspheres. A bench-scale filtration system removed less microspheres (40.3 +/- 1.5%) than oocysts (49.7 +/- 2.9%) when 0.01 M CaCl2 was supplied as coagulant. After preexposure to 5 mg of C/L of NOM, the removals of both particles declined significantly, and the removals of microspheres (13.7 +/- 1.5%) and oocysts (16.3 +/- 1.5%) were similar. Finally, the removal efficiencies of microspheres and oocysts in the presence of NOM increased to 69.3 +/- 3.5% and 67.7 +/- 6.4%, respectively, when alum was supplied as coagulant at the optimum dosage needed to destabilize the oocysts. These experimental results suggest that microspheres can be used to provide a conservative estimate of oocyst removal in filters containing hydrophilic negatively charged filter media.  相似文献   

16.
Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0-5 microM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu-gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of Fvaried by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.  相似文献   

17.
Cl(2) and Cl(2)O are highly reactive electrophiles capable of influencing rates of disinfection byproduct (DBP) precursor chlorination in solutions of free available chlorine (FAC). The current work examines how organic compound structure influences susceptibility toward chlorination by Cl(2) and Cl(2)O relative to the more abundant (but less reactive) electrophile HOCl. Chlorination rates and products were determined for three aromatic ethers, whose reactivities with FAC increased in the order: 3-methylanisole <1,3-dimethoxybenzene <1,3,5-trimethoxybenzene. Varying solution conditions (pH, [FAC], [Cl(-)]) permitted quantification of regiospecific second-order rate constants for formation of each product by Cl(2), Cl(2)O, and HOCl. Our results indicate that as the reactivity of methoxybenzenes decreases, the importance of Cl(2) and Cl(2)O (relative to HOCl) increases. Accordingly, Cl(2) and Cl(2)O are likely to play important roles in generating DBPs that originate from natural organic matter (NOM) constituents of somewhat moderate reactivity. As [Cl(2)] is proportional to [Cl(-)] and [Cl(2)O] is proportional to [HOCl](2), ramifications for DBP control measures may differ significantly for these precursors compared to more reactive NOM moieties likely to react predominantly with HOCl. In particular, the role of chloride as a chlorination catalyst challenges its traditional classification as an "inert" electrolyte in water treatment processes.  相似文献   

18.
Flow field flow fractionation (FIFFF), inductively coupled plasma-mass spectroscopy (ICP-MS), and transmission electron microscopy (TEM) coupled to X-ray energy dispersive spectrometry (X-EDS) are used in series for the first time to characterize colloids. Results demonstrate the utility of FIFFF-ICP-MS-TEM/X-EDS to relate physical properties (size) of colloids to their chemical properties (chemical composition, surface chemical composition, and colloids-trace elements association). Results suggest that the major part of natural organic matter (NOM) is concentrated in the fraction < 0.01 microm (C2). Aluminum, iron, and manganese are the main colloidal components in the fraction 0.01-0.45 microm (C1). Aluminum occurs as aluminum oxides or aluminosilicates in the whole size range, while iron and manganese occur as individual oxyhydroxides in the size range < 0.20 microm. Within the C2 fraction, Al, Mn, Cu, and Ni elements are complexed to NOM (e.g., humic substances). Iron is complexed to NOM in some samples and probably free in other samples. Lead is totally free in all samples. Within the C1 fraction, Cu and Pb are mostly associated to Fe and Mn oxyhydroxides. Consequently, NOM with Fe and Mn oxyhydroxides are the main colloidal carriers of trace elements in the Loire watershed system.  相似文献   

19.
Fouling of membrane surfaces by particulate matter and large organic molecules is relatively common for pressure-driven membrane processes, namely, reverse osmosis (RO), nanofiltration (NF), and ultrafiltration (UF). Donnan membrane process (DMP) or Donnan Dialysis is driven by electrochemical potential gradient across a semipermeable ion exchange membrane. Theoretically, DMP is not susceptible to fouling by fine particulates and/or large organic molecules. According to information available in the open literature, however, DMP has not been tried to treat slurry or sludge with relatively high concentration of suspended solids or large organic molecules. This study presents the salient results of an extensive investigation pertaining to selective alum recovery from water treatment residuals (WTR) using DMP. Water treatment plants use alum, Al2(SO4)3 x 14H2O, as a coagulant, alum being finally converted and discharged as insoluble aluminum hydroxide along with natural organic matters (NOM), suspended solids, and other trace impurities. One commercial cation exchange membrane, namely Nafion 117 from DuPont Chemical Co., was used in the study for treating WTR obtained from two different water treatment plants in Pennsylvania. A series of laboratory tests confirmed that over 70% of alum is easily recoverable, and recovered alum is essentially free of particulate matter, NOM, and other trace metals. Most importantly, after repeated usage in the presence of high concentration of NOM and suspended solids, there was no noticeable decline in aluminum flux through the membrane, i.e., membrane surface fouling was practically absent. The DMP process involves coupled transport of Al3+ and H+ across the cation exchange membrane, and intramembrane transport was the rate-limiting step. Experimentally determined aluminum-hydrogen interdiffusion coefficient (D(Al-H)) values within the membrane were quite high (approximately 10(-6) cm2/s) under representative conditions, thus confirming high alum recovery rate. DMP was also found equally effective in recovering Fe(III) based coagulants from WTR.  相似文献   

20.
Plastic is one of the most common pollutants in the environment. Therefore, the number of studies on the use of biodegradable packaging is increasing. Starch is the primary material used in the production of biodegradable plastics due to its natural abundance and high biodegradability. Yet, the strong hydrophilic character of starch presents a challenge. Therefore, the modification of its structure through oxidation may yield interesting results as the viscosity reduction. The objectives of this work were to obtain cassava (Manihot esculenta Crantz) starch oxidized with 0.8 and 2.0% active chlorine, to develop biodegradable films and characterize their mechanical properties, solubility in water, permeability to water vapor, degree of swelling, and sorption isotherms. Biodegradable films were produced with starch concentrations of 2, 3, 4, and 5% w/w and 25% glycerol (g/100 g starch) added as a plasticizer. Images of the films were obtained with an atomic force microscope and allow to observe a smooth surface and the absence of starch granules in the film produced with oxidized starches. The tensile strength of the biodegradable film produced with oxidized starch (0.8% active chlorine) was 80 MPa. The value of permeability to water vapor was 1.613 × 10−9 kg/day/m/Pa, and the average solubility was 41%. The sorption isotherms showed that biodegradable films made with oxidized starches cannot be used in environments with relative humidity below 35% or above 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号