首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using binding assays, we discovered an interaction between karyopherin alpha2 and the nucleoporin Nup153 and mapped their interacting domains. We also isolated a 15-kDa tryptic fragment of karyopherin beta1, termed beta1*, that contains a determinant for binding to the peptide repeat containing nucleoporin Nup98. In an in vitro assay in which export of endogenous nuclear karyopherin alpha from nuclei of digitonin-permeabilized cells was quantitatively monitored by indirect immunofluorescence with anti-karyopherin alpha antibodies, we found that karyopherin alpha export was stimulated by added GTPase Ran, required GTP hydrolysis, and was inhibited by wheat germ agglutinin. RanGTP-mediated export of karyopherin alpha was inhibited by peptides representing the interacting domains of Nup153 and karyopherin alpha2, indicating that the binding reactions detected in vitro are physiologically relevant and verifying our mapping data. Moreover, beta1*, although it inhibited import, did not inhibit export of karyopherin alpha. Hence, karyopherin alpha import into and export from nuclei are asymmetric processes.  相似文献   

2.
BACKGROUND: Proteins generally enter or exit the nucleus as cargo of one of a small family of import and export receptors. These receptors bear distant homology to importin beta, a subunit of the receptor for proteins with classical nuclear localisation sequences (NLSs). To understand the mechanism of nuclear transport, the next question involves identifying the nuclear pore proteins that interact with the different transport receptors as they dock at the pore and translocate through it. RESULTS: Two pathways of nuclear import were found to intersect at a single nucleoporin, Nup153, localized on the intranuclear side of the nuclear pore. Nup153 contains separate binding sites for importin alpha/beta, which mediates classical NLS import, and for transportin, which mediates import of different nuclear proteins. Strikingly, a Nup153 fragment containing the importin beta binding site acted as a dominant-negative inhibitor of NLS import, with no effect on transportin-mediated import. Conversely, a Nup153 fragment containing the transportin binding site acted as a strong dominant-negative inhibitor of transportin import, with no effect on classical NLS import. The interaction of transportin with Nup153 could be disrupted by a non-hydrolyzable form of GTP or by a GTPase-deficient mutant of Ran, and was not observed if transportin carried cargo. Neither Nup153 fragment affected binding of the export receptor Crm1 at the nuclear rim. CONCLUSIONS: Two nuclear import pathways, mediated by importin beta and transportin, converge on a single nucleoporin, Nup153. Dominant-negative fragments of Nup153 can now be used to distinguish different nuclear import pathways and, potentially, to dissect nuclear export.  相似文献   

3.
Human p53 was expressed in E. coli, purified, labeled with fluorescein iodoacetamide (IAF) and characterized for sequence-specific DNA binding and epitope disposition. Injected into the cytoplasm or nuclei of 3T3 cells IAF-p53 was imported into or exported from nuclei within minutes. Import was inhibited by coinjection of the lectin wheat germ agglutinine (WGA). In contrast, the peptide-protein conjugate NLS-HSA carrying the nuclear localization sequence (NLS) of the SV40 T antigen was only imported but not exported. 3T3 polykaryons were injected with IAF-p53 and photo-bleached by Scanning Microphotolysis in such a manner that only a single nucleus per polykaryon remained non-bleached. IAF-p53 was found to migrate rapidly (halftime 10 min) from non-bleached into bleached nuclei, while NLS-HSA did not. In digitonin permeabilized cells IAF-p53 was imported into nuclei. When removed from the medium after nuclear accumulation IAF-p53 was exported from the nuclei. Nuclear import and export of IAF-p53 both were rapid (halftimes of a few minutes, 22 C) and strongly inhibited by WGA or incubation on ice. NLS-HSA was only imported but not exported. We conclude that the nucleocytoplasmic transport of p53, in contrast to that of NLS-HSA, is bidirectional and that transport in both directions is carrier mediated and energy dependent. These results suggest that p53 contains nuclear export signals (NES) in addition to import signals (NLS) and thus open new views on the potential regulation of p53 cellular fractions.  相似文献   

4.
5.
Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The alpha subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the beta subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207-217 or a heterologous nuclear export signal, but not a mutant form of residues 207-217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly.  相似文献   

6.
In metazoan cells, the CAS protein has been shown to function as a recycling factor for the importin-alpha subunit of the classical nuclear localization signal receptor, exporting importin-alpha from the nucleus to allow its participation in multiple rounds of nuclear import. CAS is a member of a family of proteins that bear homology to the larger subunit of the nuclear localization signal receptor, importin-beta, and that are found in all eukaryotes from yeast to humans. Sequence similarity identifies the product of the Saccharomyces cerevisiae CSE1 gene as a potential CAS homologue. Here we present evidence that Cse1p is the functional homologue of CAS: Cse1p is required to prevent accumulation of Srp1p/importin-alpha in the nucleus, it localizes to the nuclear envelope in a pattern typical of nuclear transport receptors, and it associates in vivo with Srp1p in a nucleotide-specific manner. We show further that mutations in CSE1 and SRP1 have specific effects on their association and on the intracellular localization of Cse1p.  相似文献   

7.
Yeast cells mutated in YRB2, which encodes a nuclear protein with similarity to other Ran-binding proteins, fail to export nuclear export signal (NES)-containing proteins including HIV Rev out of the nucleus. Unlike Xpo1p/Crm1p/exportin, an NES receptor, Yrb2p does not shuttle between the nucleus and the cytoplasm but instead remains inside the nucleus. However, by both biochemical and genetic criteria, Yrb2p interacts with Xpo1p and not with other members of the importin/karyopherin beta superfamily. Moreover, the Yrb2p region containing nucleoporin-like FG repeats is important for NES-mediated protein export. Taken together, these data suggest that Yrb2p acts inside the nucleus to mediate the action of Xpo1p in at least one of several nuclear export pathways.  相似文献   

8.
Bidirectional movement of proteins and RNAs across the nuclear envelope requires Ran, a Ras-like GTPase. A genetic screen of the yeast Saccharomyces cerevisiae was performed to isolate conditional alleles of GSP1, a gene that encodes a homolog of Ran. Two temperature-sensitive alleles, gsp1-1 and gsp1-2, were isolated. The mutations in these two alleles map to regions that are structurally conserved between different members of the Ras family. Each mutant strain exhibits various nuclear transport defects. Both biochemical and genetic experiments indicate a decreased interaction between Ntf2p, a factor which is required for protein import, and the mutant GSP1 gene products. Overexpression of NTF2 can suppress the temperature sensitive phenotype of gsp1-1 and gsp1-2 and partially rescue nuclear transport defects. However, overexpression of a mutant allele of NTF2 with decreased binding to Gsp1p cannot rescue the temperature sensitivity of gsp1-1 and gsp1-2. Taken together, these data demonstrate that the interaction between Gsp1p and Ntf2p is critical for nuclear transport.  相似文献   

9.
We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Deltamog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1-1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway.  相似文献   

10.
The phagocyte NADPH oxidase is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activation involves assembly of membrane-integrated cytochrome b558 comprising gp91(phox) and p22(phox), two specialized cytosolic proteins (p47(phox) and p67(phox)), each containing two Src homology 3 (SH3) domains, and the small G protein Rac. In the present study, we show that the N-terminal SH3 domain of p47(phox) binds to the C-terminal cytoplasmic tail of p22(phox) with high affinity (KD = 0.34 microM). The binding is specific to this domain among several SH3 domains including the C-terminal one of p47(phox) and the two of p67(phox) and requires the Pro156-containing proline-rich sequence but not other putative SH3 domain-binding sites of p22(phox). Replacement of Trp193 by Arg in the N-terminal SH3 domain completely abrogates the association with p22(phox). A mutant p47(phox) with this substitution is incapable of supporting superoxide production under cell-free activation conditions. These findings provide direct evidence that the interaction between the N-terminal SH3 domain of p47(phox) and the proline-rich region of p22(phox) is essential for activation of the NADPH oxidase.  相似文献   

11.
Integrin signaling is mediated by interaction of integrin cytoplasmic domains with intracellular signaling molecules. Recently, we identified a novel 111-amino acid polypeptide, termed beta3-endonexin, which interacts selectively with the integrin beta3 cytoplasmic domain. In the present study we conducted a systematic mutational analysis of both the integrin beta3 cytoplasmic domain and beta3-endonexin to map sites required for interaction. The interaction of the full-length beta3 integrin subunit with beta3-endonexin in vitro required the beta3 cytoplasmic domain. In a yeast two-hybrid system, both membrane-proximal and membrane-distal residues of the beta3 cytoplasmic domain were necessary for interaction with beta3-endonexin. In particular, the membrane-distal NITY motif at beta3 756-759 was critical for the interaction. Exchange of beta3 residues 756-759 (NITY) for the corresponding residues in beta1 (NPKY) endowed the beta1 cytoplasmic domain with the ability to interact with beta3-endonexin. Conversely, exchange of the NPKY motif at beta1 772-775 for the NITY motif in beta3 abolished interaction of this chimeric cytoplasmic domain with beta3-endonexin. Because the NITY motif is present in the beta3 but not the beta1 cytoplasmic domain, these results explain the selective interaction of this cytoplasmic domain with beta3-endonexin. In addition, deletional analysis suggested that a core 91-residue sequence of beta3-endonexin is sufficient for specific binding to the beta3 cytoplasmic domain. These studies have identified a cytoplasmic domain sequence motif that specifies an integrin-specific protein-protein interaction.  相似文献   

12.
In hind limb muscles, the aldolase A muscle-specific promoter is specifically expressed in glycolytic fast-twitch fibers. Here, we show that in addition, it is expressed at higher levels in trunk and limb muscles than in neck and head muscles independent of their fiber-type content. We have identified by analysis of transgenic mice a DNA element that is required for this differential expression and, to a lesser extent, for fiber-type specificity. We show that members of the nuclear receptor superfamily bind this element in skeletal muscle nuclear extracts. Interestingly, in gel mobility shift assays, different complexes were formed with this sequence in tongue nuclear extracts compared with limb or trunk muscle nuclear extracts. Therefore, binding of distinct nuclear receptors to a single regulatory sequence appears to be associated with the location-dependent expression of the aldolase A muscle-specific promoter.  相似文献   

13.
We have investigated the expression and extracellular release of enzymatically active superoxide dismutase, one of the 10 major extracellular proteins of Mycobacterium tuberculosis, both in its native host and in the heterologous host Mycobacterium smegmatis. We found that the M. tuberculosis superoxide dismutase gene, encoding a leaderless polypeptide of Mr approximately 23,000 representing one of the four identical subunits of the enzyme, is expressed constitutively under normal growth conditions and at a 5-fold increased level under conditions of hydrogen peroxide stress. The highly pathogenic mycobacterium M. tuberculosis expresses 93-fold more superoxide dismutase than the nonpathogenic mycobacterium M. smegmatis, and it exports a much higher proportion of expressed enzyme (76 versus 21%); taking both expression and export into consideration, M. tuberculosis exports approximately 350-fold more enzyme than M. smegmatis. In M. smegmatis, recombinant M. tuberculosis superoxide dismutase is expressed at 8.4 times the level of the endogenous enzyme and the proportion exported (66%) approaches that in the homologous host; hence M. smegmatis exports up to 26-fold more of the recombinant than endogenous enzyme. Interestingly, subunits of the M. tuberculosis and M. smegmatis enzymes readily and stoichiometrically exchange with each other, forming five different complexes of four subunits, both when the enzymes are expressed in the recombinant host and when the purified enzymes are incubated together; however, each subunit retains its characteristic metal ion, iron for M. tuberculosis and manganese for M. smegmatis. Compared with the cell-associated enzyme, the supernatant enzyme of recombinant M. smegmatis is enriched for M. tuberculosis enzyme subunits, consistent with preferential export of the M. tuberculosis enzyme. Recombinant M. tuberculosis superoxide dismutase transcomplements a superoxide dismutase-deficient Escherichia coli, resulting in a reduction of sensitivity of the strain to oxidative stress, but the enzyme is not exported from this nonmycobacterial host. Our findings indicate that the information for export of the M. tuberculosis superoxide dismutase is contained within the protein but that export additionally requires export machinery specific to mycobacteria.  相似文献   

14.
Gastric acid secretion is mediated by the H/K-ATPase of parietal cells. Activation of acid secretion involves insertion of H/K-ATPase into the parietal cell plasmalemma, while its cessation is associated with reinternalization of the H/K-ATPase into an intracellular storage compartment. The cytoplasmic tail of the H/K-ATPase beta subunit includes a four residue sequence homologous to tyrosine-based endocytosis signals. We generated transgenic mice expressing H/K-ATPase beta subunit in which this motif's tyrosine residue is mutated to alanine. Gastric glands from animals expressing mutant beta subunit constitutively secrete acid and continuously express H/K-ATPase at their cell surfaces. Thus, the beta subunit's tyrosine-based signal is required for the internalization of H/K-ATPase and for the termination of acid secretion. As a consequence of chronic hyperacidity, the mice develop gastric ulcers and a hypertrophic gastropathy resembling Menetrier's disease.  相似文献   

15.
16.
The yeast Yarrowia lipolytica is a model organism for in vivo study of the signal recognition particle-dependent targeting pathway. In this report, we defined solubilization conditions and set up a fractionation procedure of Y. lipolytica microsomes to determine the amounts of Sec61p-containing translocation pores linked to ribosomes. In contrast to Saccharomyces cerevisiae, from 70 to 80% of Sec61p associates with ribosomes in this yeast. The chaperone protein Kar2p and the Sls1p product, a resident protein of the endoplasmic reticulum lumen, partially fractionate with this Sec61p population. Moreover, Sls1p can be co-immunoprecipitated with Kar2p, and the two polypeptides are shown to directly interact in the yeast two-hybrid system. A site-directed mutagenesis was performed on the SLS1 coding sequence that allowed us to define a functional domain in Sls1p. Indeed, co-translational translocation of a reporter protein is affected when one of these mutant proteins is expressed. Moreover, this protein has lost its capacity to interact with Kar2p, and the two lumenal polypeptides might thus cooperate to promote secretory protein co-translational translocation.  相似文献   

17.
The chromatin organization of eukaryotic telomeres is essential for telomeric function and is currently receiving great attention. In yeast, the structural organization of telomeres involves a complex interplay of telomeric proteins that results in the formation of heterochromatin. This telomeric heterochromatin involves homotypic and heterotypic protein interactions that have been summarized in a general model. Recent analyses have focused on the study of the structural complexity at yeast telomeres to the level of specific nucleosomes and of the distribution of protein complexes in a natural telomeric region (LIII). In this report, we further analyze the structural complexity of LIII and the implication of this structure on telomeric silencing. It is shown that the establishment of repressive heterochromatin structures at LIII requires the recruitment of Sir3p through interaction with the N terminus of histone H4. The establishment of such structures does not require acetylation of any of four lysines located in the H4 N terminus (lysines 5, 8, 12, and 16).  相似文献   

18.
19.
Controversy over the efficacy of many topical wound treatments, particularly growth factors, is common, with many clinical practitioners still confused as to the real value of these agents. A serious lack of knowledge appears to exist concerning the diffusion and distribution of topically applied solutes in wounds. Without this basic understanding there seems little chance of accurately predicting the therapeutic window of drugs targeted at cellular activities, such as division and chemotaxis, and processes, such as collagen lattice deposition and contraction, occurring below the surface of the granulating layer. This study was designed to determine the absorption and distribution of a number of radiolabeled solutes (water, sodium chloride, lidocaine) and growth factors (basic fibroblast growth factor, epidermal growth factor) applied topically to full-thickness excisional wounds in rats during the early (2 d), mid (7 d), and late (12 d) stages of repair. Results showed that water and sodium penetrated deepest into wound sites and that changes in water distribution and retention in the wound paralleled the healing process. Multiple stepwise regression showed that molecular weight and tissue depth, but not day of healing, were significant factors in predicting the concentration of each solute in wound and underlying tissue sites. This finding was consistent with a tissue diffusion model developed in this study. Basic fibroblast growth factor and epidermal growth factor only penetrated slightly into the upper granulating layers of the wound site, and calculation of therapeutic doses, based on the percentage of applied solute reaching the deeper granulating layers, is presented.  相似文献   

20.
Contact system activation, in vitro, is triggered by activation of factor XII (FXII) on binding to an activator, such as negatively charged surfaces. A putative surface-binding site of FXII has been located within the amino acid residues 1-28 by identifying the epitope recognized by a monoclonal antibody (MoAb), B7C9, which inhibits kaolin-induced clotting activity. To further elucidate the role of the amino terminal binding site in the regulation of FXII activation, we have characterized a FXII recombinant protein (rFXII-triangle up19) deleted of the amino acid residues 3-19, which are encoded by the second exon of FXII gene. A plasmid encoding for rFXII-triangle up19 was constructed and expressed in HepG2 cells by using vaccinia virus. Purified rFXII-triangle up19 migrated as a single band of Mr 77,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel, did not bind to MoAb B7C9 immobilized on Protein A-Sepharose, thus confirming that it lacked the epitope for this MoAb, and had no amidolytic activity towards the chromogenic substrate S-2302 in the absence of activator. rFXII-triangle up19 specific clotting activity was lower (44%) than that of native FXII. The activation rate of rFXII-triangle up19 by kallikrein in the absence of dextran sulfate was about four times higher than that of full-length FXII and was increased in the presence of dextran sulfate. However, rFXII-triangle up19 underwent autoactivation in the presence of dextran sulfate. Labeled rFXII-triangle up19 bound to kaolin, which binding was equally well inhibited by either, rFXII-triangle up19 or full-length FXII (IC50 = 7.2 +/- 2.2 nmol/L for both proteins). Accordingly, a synthetic peptide corresponding to FXII amino acid residues 3-19 did not inhibit the binding of labeled full-length FXII to kaolin. rFXII-triangle up19 generated a similar amount of FXIIa- and kallikrein-C1-inhibitor complexes in FXII-deficient plasma in the presence of kaolin, as did full-length FXII; but generated less factor XIa-C1-inhibitor complexes (50%) than full-length FXII. This impaired factor XI activation by rFXII-triangle up19a was also observed in a purified system and was independent of the presence of high molecular weight kininogen. Furthermore, the synthetic peptide 3-19, preincubated with factor XI, inhibited up to 30% activation of factor XI both in the purified system as well as in plasma. These results together indicate that amino acid residues 3-19 of FXII are involved in the activation of factor XI and do not contribute to the binding of FXII to negatively charged surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号