首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
秦蒙  陈良培 《机床与液压》2022,50(17):61-65
随着经济和社会的发展,对破拆机器人工程作业的位置精度和能耗提出了更为严苛的需求。为了提高作业定位精度、降低系统能耗,通过反馈油缸杆位移建立基于PID的闭环控制系统提升位置精度,通过大臂驱动缸和平衡缸的双液压缸设计,建立大臂运动过程的重力势能回收系统。通过平衡缸连接蓄能器储存大臂下降过程势能并在下一个抬升工况再利用,降低负载敏感泵跟踪最大负载的输出压力,实现节能控制。通过ADAMS-AMESim软件联合,对基于PID的闭环系统动态特性和双液压缸大臂势能回收系统的动态特性和节能效果进行仿真。结果表明,闭环系统可精确控制油缸位移,误差小于1 mm,有效补偿了泄漏等造成的误差;双液压缸大臂能量回收系统针对大臂升降工况泵输出功率降低60%以上,实现了能量回收再利用。  相似文献   

2.
针对挖掘机动臂下降时较大势能转化为热能的工况,各种能量回收与再利用系统逐渐被提出。基于流量再生与平衡理论提出一种挖掘机动臂的能量回收系统,在该系统中,动臂下降时的部分势能通过流量再生的方式得到直接利用,而另一部分势能通过平衡回路以液压能的形式储存在蓄能器中,当动臂上升时再将该部分能量释放出来,完成能量的回收与再利用。使用AMESim搭建传统挖掘机工作装置模型与该能量回收工作装置系统模型,通过计算分析得到能量回收系统中主要参数的最优值。仿真结果表明:能量回收系统在参数优化后,可实现对挖掘机动臂势能37.25%的回收与利用;同时,在挖掘机动臂的一个典型工作周期中,参数优化后的能量回收系统相较于传统挖掘机动臂系统,可实现55.52%的流量再生以及31.64%的节能效果。  相似文献   

3.
通过对非对称泵控差动缸系统势能回收效率进行研究,在理论分析的基础上建立势能回收过程的数学模型,分析蓄能器压力对能量回收效率的影响规律;建立势能回收系统的物理仿真模型,对势能回收过程进行仿真研究。结果表明:与普通气囊式蓄能器相比,采用恒压蓄能器进行能量回收可以避免在势能回收过程中,非对称泵从马达工况转化为泵工况而无法回收剩余能量;当负载为10 kN时,采用恒压蓄能器最大节能效率可达到29.8%。通过数值分析计算得到负载下降过程中蓄能器最优压力曲线,可为后续势能回收蓄能器的选型提供理论上的指导。  相似文献   

4.
大型串联机械臂液压控制系统存在变负载及外干扰问题,机械臂不同工作姿态的等效质量会造成液压缸系统固有频率变化,影响系统动态特性,为此提出一种基于线性扩张状态观测器的滑动模态控制策略(LESOSMC)。以破拆机器人机械臂为研究对象,仿真试验结果表明:LESOSMC在机械臂处于不同姿态时,保持了很好的动态特性和稳态精度,对周期正弦信号也具有良好的跟踪性能。LESOSMC在机械臂变负载控制中具有良好的鲁棒性,满足重载液压机械臂关节位置控制的要求,为解决液压重载机械臂关节液压缸的位置控制提供了有效的工程方法。  相似文献   

5.
为解决现有液压挖掘机动臂下降过程中存在的能量损失问题,提出一种油液混合动力能量回收与再利用系统,该系统使用连续增压器解决能量存储与释放过程中蓄能器与动臂油缸之间的压力匹配问题。介绍连续增压器的基本原理,建立油液混合动力系统的数学模型,基于AMESim搭建系统仿真模型并对能量回收与再利用过程进行仿真。结果表明:该系统可以有效地回收原本动臂下降过程中损失的势能,并存储在蓄能器当中;在负载不变的情况下,动臂每下降3次所回收的能量可将动臂顶升1次。经计算,该系统回收的能量占可回收能量的47%左右。  相似文献   

6.
多执行器负载敏感系统的分流控制发展综述   总被引:10,自引:0,他引:10  
由于多执行器负载敏感系统中泵的输出流量不足以全速驱动所有执行器动作,因而在多个执行器复合动作使泵的输出流量不足,尤其当大、小惯性负载同时起动时,传统的分流控制方法会影响多执行器动作的协调性,并引起较大的能量浪费。论文总结了各种兼顾系统工作效率和多执行器动作协调性的分流控制方法。  相似文献   

7.
陈明东 《机床与液压》2018,46(11):119-122
为降低液压挖掘机整机能耗,提出一种以蓄能器为储能装置的液压挖掘机动臂闭式回路势能回收系统。以80k N级液压挖掘机为研究对象,基于系统工作原理,建立了能量回收系统电动机-泵/马达轴系力矩平衡模型,分析了蓄能器平均工作压力与负载压力的关系。结果表明:电动机-泵/马达轴系在电动机无功率输出工况力矩平衡时,液压蓄能器工作压力平均值约为动臂负载压力的2倍。并结合半载工况挖掘机动臂下降试验,确定8吨级液压挖掘机蓄能器最小和最大工作压力分别为16.04 MPa和19.56 MPa。  相似文献   

8.
牙轮钻机采用静液压制动,需要避免系统压力波动对泵产生的冲击,同时钻机的动能或者势能可以回收再利用。通过对静液压制动系统的计算与仿真分析,对闭式泵高压溢流阀参数进行调整,减小系统压力冲击;提出了制动系统能量回收方案,并对能量回收系统进行了数学建模与仿真分析,获得了蓄能器气腔压力随时间的增长关系,揭示了节流阀开度大小与制动时间的关系;对制动系统能量回收效率进行了计算。证明了牙轮钻机采用静液压制动系统的正确性以及能量回收方案的可行性,实现了将钻机动能或者势能转换为蓄能器压力能的能量回收,为大型车辆制动系统能量回收提供了参考。  相似文献   

9.
冯江江  杨敬  权龙 《机床与液压》2020,48(4):136-140
装载机外负载变化频繁且波动范围大,动臂举升时液压系统峰值功率大,动臂下降时举升装置重力势能经液压阀口以节流损失的形式转化为热能,导致液压油温度升高、系统能量效率低。提出基于三腔液压缸的装载机动臂自重液气平衡势能回收系统,在SimulationX仿真软件中建立了装载机机液联合仿真模型,通过试验结果验证了该模型的准确性。在此模型的基础上,采用已建立的三腔液压缸仿真模型代替原机动臂两腔液压缸,针对空载工况中动臂的举升下降过程进行了仿真研究,对比两腔液压缸与三腔液压缸的运行与能耗特性。研究结果表明:在蓄能器初始压力为6 MPa时,该系统具有与原机相同的运行特性,液压泵峰值功率降低57. 1%,能量消耗降低约39. 5%。  相似文献   

10.
席文献 《机床与液压》2024,52(9):156-160
压裂液连续混配常规采用阀前负载敏感液压系统作为其液压动力系统,由于混配施工工艺不断改良细化,在大扭矩工况下多马达复合动作,液压系统流量饱和情况下流量优先向轻载分配。为解决这一问题,优选阀后负载敏感液压系统,在流量供给不足情况下,同比减少各负载流量供给,实现马达同步动作。基于AMESim仿真软件,分别搭建连续混配设备阀前及阀后负载敏感液压系统仿真模型,得到泵与马达压力、流量及功率变化曲线。仿真结果表明:阀后负载敏感系统中,负载敏感泵输出功率始终与负载所需功率相匹配;系统流量充足时,泵输出流量始终随着系统所需流量的变化而变化;系统流量不足时,阀后负载敏感阀可以实现流量共享,各马达负载同步动作。实验结果表明:仿真与实验数据差距小于3%,阀后负载敏感系统可以按照阀口开度比例分配各路负载流量,实现各负载平稳动作。  相似文献   

11.
聂波  张进 《机床与液压》2020,48(2):125-128
为了降低电动叉车液压举升装置能量消耗,采用负载敏感平衡阀驱动叉车臂实现升降功能。建立电动叉车提升装置简图,分析叉车自由提升区和第二提升区运动原理。根据能量回收方程式,推导出液压驱动数学模型和节能效率模型。在不同工况下,采用MATLAB对液压泵输出功率进行仿真。结果表明:在空载或轻载工况下,叉车臂在下降过程中,有负载敏感平衡阀比无负载敏感平衡阀的液压泵输出功率小,最大节约了69 kW;在重载工况下,叉车在上升、静止及下降过程中,有、无负载敏感平衡阀的液压泵输出功率几乎相同。合理设置负载大小,采用负载敏感平衡阀,可以实现能量回收,从而节约能量消耗。  相似文献   

12.
朱帅  姚平喜 《机床与液压》2017,45(22):76-78
针对需频繁启动与制动的高速重载液压系统存在的制动冲击和能量损耗问题,提出一种以液压蓄能器为储能元件,通过对液压变压器中变量泵的排量进行合理控制,使液压缸制动腔的压力满足制动要求的能量回收系统。详细介绍了该系统的工作原理和控制过程,对关键元件进行了选型分析,利用AMESim软件对系统进行了仿真,验证了其可行性。仿真结果表明,该系统具有良好的制动效果和较高的能量回收效率。  相似文献   

13.
王笑  王磊 《机床与液压》2023,51(24):60-65
针对现有电动挖掘机采用多路阀控系统造成的能效低、电池装机容量大但续航时间短的不足,提出一种变转速双泵直驱液压挖掘机动臂系统。根据动臂液压缸面积比配置2个液压泵/马达的排量,实现液压缸流量匹配。采用液压蓄能器与超级电容进行混合储能,实现动臂重力势能的高效回收利用。分析所提系统的工作原理,建立系统多学科联合仿真模型,分析系统运行特性和能量特性。研究结果表明:双泵直驱挖掘机动臂系统具有良好的控制特性,速度运行平稳。与传统多路阀控系统相比,双泵直驱挖掘机动臂系统节能效果显著,蓄能器压力21 MPa和容积180 L时,重力势能回收效率为79.9%,能耗减少64.6%,进一步通过合理选择蓄能器工作压力和容积,双泵直驱动臂系统的节能效果可达到65%以上。  相似文献   

14.
杨敬  都佳  李骞飞 《机床与液压》2020,48(17):64-69
目前,起重机普遍使用的传统抗流量饱和负载敏感液压系统存在响应速度慢、速度精度差、能耗大的缺点。为克服这些缺点,建立以电子压力补偿原理为基础的起重机双阀芯泵阀协同压力流量复合控制液压系统。对起重机典型负载原理进行分析,提出一种以手柄开度信号为阈值的多模式控制策略。建立传统抗流量饱和负载敏感液压系统AMESim仿真模型,并通过试验验证了仿真模型的正确性。建立起重机双阀芯泵阀协同压力流量复合控制液压系统AMESim仿真模型。仿真结果表明:与传统抗流量饱和负载敏感系统相比,双阀芯泵阀协同压力流量复合控制液压系统在变幅油缸单动作微动模式下使用主阀和小流量伺服阀速度精度更高,速度跟踪误差分别降低26.2%和56.5%,卷扬马达单动作微动模式下使用主阀和小流量伺服阀速度跟踪误差分别降低46.1%和69.8%。  相似文献   

15.
针对传统液压助力转向系统的压力和流量损失问题,设计了基于负载敏感技术的液压助力转向系统。基于仿真软件AMESim对负载敏感泵和液压助力转向系统进行了建模。仿真结果表明:当在直线行驶工况下,该系统以低压、小流量的待机状态输出;当有转向需求时,系统能根据转阀开启阀度,快速调节泵出口的压力和流量,并且能够满足助力需求。基于负载敏感技术的液压助力转向系统在车辆行驶过程中能减小能量消耗,达到节能的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号