首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了实现钒钛磁铁矿尾矿中钛、铁等资源的二次综合利用,提高资源利用率,采用矿相显微镜、扫描电子显微镜和矿物自动解离系统(MLA)对某钒钛磁铁矿尾矿中铁和钛的赋存规律进行了详细研究,讨论了影响尾矿中钛、铁回收的矿物学因素。结果表明,该尾矿的颗粒较细,矿物主要包括钛铁矿、钛磁铁矿、黄铁矿等金属矿物和攀钛透辉石、斜长石和角闪石等脉石矿物组成;矿物中钛磁铁矿和钛铁矿除部分以单体解离态产出外,多呈形态各异的粒状沿脉石的粒间、边缘、裂隙及孔洞填充而构成较为复杂的镶嵌和包裹关系;铁、钛元素在目的矿物中的赋存比例分别为19.87%和51.62%;铁在钛铁矿、攀钛透辉石、角闪石中的赋存比例占78.85%,单体解离度为72.29%,TiO_2在钛铁矿、攀钛透辉石和角闪石的赋存比例占90.94%,单体解离度为71.43%,因此实现钛磁铁矿、钛磁铁矿和攀钛透辉石、角闪石的有效分离是提高铁、钛回收率的关键。  相似文献   

2.
摘要:印尼某海滨砂钒钛磁铁矿工艺矿物学研究表明,该矿中多数钛磁铁矿是磁铁矿—钛铁晶石—镁铝(铁)尖晶石组成的均一固溶体,钛磁铁矿含TFe≥59%,TiO2 11.5%~12%,Al2O34%,MgO3%,钛磁铁矿单体解离度较高,少部分和脉石形成富连生体。钛铁矿有粒状和片晶状两种,它们都是钛铁矿和赤铁矿的均一固溶体。在矿石性质的基础上,阐明了矿石可选性。随着共伴生高温石英长石的进一步发现,钛磁铁矿和钛铁矿的火山成因得到佐证。   相似文献   

3.
国内某钛铁矿为内陆砂矿,砂矿层类型为风积型、坡积型和残积型三种类型。其特点是品位低、含泥量高;主要有价矿物是钛铁矿、钛磁铁矿;钛铁矿部分出溶少量赤铁矿和磁铁矿,钛铁矿和钛磁铁矿都是钛铁矿和铁矿物的固溶体。试验采用擦洗脱泥-重选-磨矿-磁选-重选联合流程,得到TiO2品位46.50%的钛铁矿精矿,钛铁矿产率1.44%,回收率36.69%;同时得到产率0.88%,TFe56.90%,TiO2 14.28%的钛磁铁矿精矿。  相似文献   

4.
利用矿物解离分析仪(MLA)、能谱检测、扫描电镜、体视显微镜等分析手段,分析坦桑尼亚某海滨锆钛砂矿的化学组成、粒度组成、有价矿物的选矿工艺特性等。结果表明,矿砂中有价矿物种类较多,主要有钛铁矿、锆石、金红石和白钛石、独居石等。由于有价矿物种类多,物理性质复杂,精选分离具有一定的难度。矿砂粒度主要在100~500#m,有价矿物的粒度小于320#m,呈细粒分布,粒度均匀,粒度范围较窄。钛铁矿、白钛石、金红石、锆石、独居石等目的矿物基本呈单体颗粒,不必磨矿即可分选。原砂中钛主要分布于钛铁矿、金红石、白钛石,理论回收率为88%,原砂中锆主要分布于锆石,理论回收率约98%。  相似文献   

5.
正坦桑尼亚里干加(Liganga)钒钛磁铁矿资源属于钒钛磁铁矿富矿,矿石中主要金属矿物为钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿)和钛铁矿,主要脉石矿物为尖晶石和绿泥石等。该矿石中有利用价值的是铁、钛、钒,其中TFe含量为51.29%,V2O5含量为0.42%。矿石中约90%的铁和钒赋存于钛磁铁矿中,对矿石选铁、钒,就是选钛磁铁矿。矿石中钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿)的矿物量达到了72.33%,比中国攀西钒钛磁铁矿矿石中钛磁铁矿含量(24%~  相似文献   

6.
陕西某尾矿库堆存有大量的钒钛磁铁矿尾矿,其中铁、钛矿物含量相对较高,具有很高的再回收利用价值。为给该尾矿的综合回收提供指导,从元素的化学组成及赋存状态、矿物组成及含量、主要矿物的解离特征、主要矿物的浸染粒度等方面,对尾矿进行了详细的工艺矿物学研究。结果显示:该尾矿全铁品位10.40%、TiO_2品位3.33%,V_2O_5品位0.10%,铁矿物主要为钛铁矿、磁铁矿和黄铁矿,其余为非金属矿物。矿石中主要矿物嵌布关系复杂,钛铁矿和磁铁矿的单体解离度低,钛铁矿多与脉石及磁铁矿结合成连生体,毗连型连生体相对较多。钛铁矿的粒度以中粗粒为主,磁铁矿的粒度以中细粒为主,粒度不均匀,在-0.037 mm粒级分布率较高。研究为该钒钛磁铁矿尾矿的合理开发利用提供了理论依据。  相似文献   

7.
对云南某钛铁矿进行了工艺矿物学研究。结果表明: 矿石中钛品位为5.62%,主要有用金属矿物为钛铁矿和钒钛磁铁矿,分别占总钛的61.39%和11.03%。脉石矿物主要是斜长石和钛辉石,脉石矿物中主要成分为SiO2和Al2O3,其含量分别为42.35%和12.53%。矿样中粗粒钛铁矿多与钒钛磁铁矿和榍石及硅酸盐紧密共生,其集合体的粒度主要集中在 0.02~0.30 mm。赋存于榍石与硅酸盐矿物中的钛多达27.58%。探索性实验结果表明:弱磁-强磁选可以有效地回收矿石中的强磁性矿物,并抛出大量的脉石矿物,实现钛铁矿的富集。因此,该矿石属于低品位难选钛铁矿,实现钛铁矿物的有效回收对该资源的开发利用具有重要的实践意义。   相似文献   

8.
这是一篇工艺矿物学领域的论文。滇南地区某钒钛磁铁矿矿石不仅有较高的铁、钛,而且伴生钪元素。为实现矿石综合利用,对该矿进行了工艺矿物学研究。采用X射线荧光光谱分析及化学分析手段,查明了矿石化学成分;利用X射线衍射分析仪(XRD)、扫描电镜与能谱分析(SEM-EDS)、电子探针(EPMA)等方法,研究了矿物的工艺特征,重点考查了铁、钛元素的赋存状态。研究结果表明:矿石中铁的主要载体矿物为钛磁铁矿、角闪石,其次为钛铁矿;钛的载体矿物主要为钛铁矿,少量赋存于榍石中;钪主要分布在角闪石中。元素配分结果表明,铁、钛的理论品位分别为71.02%、47.40%,理论回收率分别为40.52%、66.48%。分析了影响选矿回收指标的矿物学因素,为后续选冶工艺提供了理论支撑。  相似文献   

9.
西昌太和铁矿是攀西地区著名的大型钒钛磁铁矿矿床,矿床中的铁钛氧化物与硫化物广泛共生。本文对太和钒钛磁铁矿中的硫化物进行了工艺矿物学研究,查明硫化物主要包括磁黄铁矿和黄铁矿,二者的粒度分布适中,主要粒度分布在区间在20μm以上,单体含量达到60%以上,主要连生矿物有磁铁矿、钛铁矿、绿泥石、辉石等。研究表明,如果在分选流程中增加浮硫作业,既可以增加硫化物的回收,也可以进一步提高铁精矿的品质。  相似文献   

10.
钛-锆砂矿的主要工业类型是现代和古代产生的海滨和海滨-海洋砂矿。通常,这些砂矿呈细的、中等粒度的很易按粒度筛选出的砂状物料,粒度为0.05—0.8毫米。矿砂的重产品(δ>2.8)含有锆石、金红石、钛铁矿、兰晶石、硅线石、十字石、电气石和其它在自然条件下最稳定的矿物。脉石为石英和泥质矿物。钛-锆砂矿的选矿流程包括下列作业:碎解、脱泥、获取带有其它矿物杂质的密度较大  相似文献   

11.
某海滨砂矿的矿物学特征与选矿试验研究   总被引:1,自引:0,他引:1  
在矿石工艺矿物学研究的基础上,通过磁选、重选等系列试验研究,确定了某海滨砂矿的最佳选矿工艺流程及工艺指标。工艺矿物学研究表明,钛、铁共生紧密,难以分离,可作为钛磁铁矿回收利用。原矿磁选试验结果表明,采用湿法预选-磨矿-磁选流程得到的钛磁铁矿精矿:Fe品位为60.28%,回收率为76.13%,TiO2品位为12.62%,回收率为62.06%。尾矿重选试验结果表明,采用一粗一精的摇床选别流程得到的精矿:Fe品位为46.70%,作业回收率为68.45%,TiO2品位为22.02%,作业回收率为79.01%。  相似文献   

12.
矿石中金属矿物主要为磁铁矿、赤铁矿、磁赤铁矿、钛磁铁矿及钛铁矿等,磁铁矿是矿石中的主要铁矿物,赤铁矿和磁赤铁矿为磁铁矿的次生矿物,一般分布于磁铁矿中;钛铁矿物种类较多,主要为钛磁铁矿,其次为钛铁矿。磁铁矿和钛磁铁矿以粗粒浸染状嵌布为主,钛铁矿以细粒浸染状嵌布为主,磁铁矿与钛铁矿嵌布关系密切,矿物颗粒结合紧密,这种构造导致2种矿物完全解离困难,尤其是以薄片状、格子状分布于磁铁矿中的钛铁矿无法解离,这种现象会影响精矿铁品位以及钛的回收率。  相似文献   

13.
针对辽西风化壳型钒钛磁铁矿有用矿物难以回收利用的问题,进行了详细的工艺矿物学研究。矿石中金属矿物主要为磁铁矿、(钛)磁铁矿、钒磁铁矿、钛铁矿,非金属矿主要有长石、角闪石和石英。其中钛、钒主要以类质同象的形式赋存在磁铁矿中,且矿石中磁铁矿、钛铁矿及脉石矿物嵌布关系复杂,解离困难。分别采用直接磨矿-弱磁选预富集、粗粒干式预抛尾-磨矿-弱磁选预富集、粗粒湿式预抛尾-磨矿-弱磁选预富集工艺进行了预富集工艺对比试验。结果表明,粗粒湿式预抛尾-磨矿-弱磁选无论在功耗还是回收率指标方面均优于其余2种工艺。采用该工艺在磨矿细度为-0.074 mm占70%条件下,获得了V2O5含量为1.561%、回收率为60.96%,TFe品位为40.43%、回收率为24.83%的预富集精矿,可以满足后续直接酸浸提钒的工艺要求。对粗粒湿式预抛尾-磨矿-弱磁选工艺获得的精矿、尾矿进行分析检测表明,钒、钛以类质同象的形式替换磁铁矿中的铁,使预富集精矿铁品位较低,预富集精矿中磁铁矿、钛磁铁矿、脉石矿物嵌布关系复杂紧密,无法通过机械磨矿使其解离。因此,即使继续增加磨矿细度,预富集精矿全铁品位也仅能保持在40%左右,不能再继续提高。  相似文献   

14.
张敏 《矿冶工程》2014,34(1):54-56
对印度尼西亚某海滨铁砂进行了选矿探索试验研究。试验结果表明, 该矿石主要金属矿物为钛磁铁矿、钛铁矿等, 原矿石不磨直接进行分选, 采用磁选-重选联合工艺, 可获得产率23.46%, TFe品位58.08%、含TiO2 12.48%、含V2O5 0.57%, TFe回收率69.70%的铁精矿, 有效回收了海滨铁砂中的铁、钛及钒。  相似文献   

15.
为综合回收利用风化残坡积型钛矿中有价金属,探讨钛等有价元素的可回收性,采用传统工艺矿物学研究方法对国内某风化粘土型钛矿的矿石特性进行了系统的研究,并分析了影响选矿工艺的因素,提出了可行的选矿工艺方案。研究结果表明,该矿TiO2品位4.5%,主要含钛矿物为钛铁矿、白钛石和钒钛磁铁矿,矿石含泥量近80%。钛铁矿多为单体,部分氧化蚀变为白钛石,均被粘土矿物包裹或与其连生,钒钛磁铁矿为次要回收矿物,其中包含部分呈固溶体分离的钛铁矿片晶。矿石中钛分散较严重,采用物理选矿分选钛的理论回收率为48%左右,铁理论回收率仅为4%左右。结合矿石特点与工艺矿物学研究结果,该矿石选矿试验可采用“擦洗脱泥-重选-磁选”联合流程,在重选前应采用强力搅拌脱泥以消除“粘结效应”,继而采用重选预先抛尾后再磁选,之后利用强磁选、摇床精选等手段进一步提高精矿品位。该研究为选矿回收该矿床中有价金属提供了方向性指导。   相似文献   

16.
印尼某海滨砂矿合理选矿工艺流程的研究   总被引:2,自引:0,他引:2  
对印度尼西亚某海滨砂矿进行了详细的工艺矿物学及选矿工艺流程研究。由于矿石经历风化淋滤, 各种矿物磁性范围重叠, 矿样属难选矿石。采用分级-重选-磁选-焙烧联合流程进行多次选别, 使铁、钛矿物得到了较好的分离, 在原矿含TiO2和Fe分别为6.38%和21.91%时, 获得了铁精矿含Fe 56.27%、Fe回收率为63.95%, 钛铁矿精矿含TiO2 46.91%、TiO2回收率为22.42%的技术指标。  相似文献   

17.
利用X射线衍射和化学分析方法对滨海型钛铁砂矿进行了检测分析。结果表明: 滨海型钛铁砂矿主要由18.1%的钛铁矿和77.4%的铁金红石组成, 原钛铁矿中的Fe(Ⅱ)大部分氧化成Fe(Ⅲ)。利用还原-流态化浸出法, 从滨海型钛铁砂矿制备了人造金红石, 利用X射线衍射、光学显微镜、化学分析和粒度筛分对产物人造金红石进行了检测分析。结果表明: 该人造金红石是金红石型TiO2, 其中TiO2含量(质量分数)为96.12%, CaO+MgO含量为0.21%, 多孔空心结构, +150 μm粒级占96.5%, 属于高端人造金红石产品, 是氯化钛白和海绵钛生产的理想原料。  相似文献   

18.
攀西红格铁矿随着开采深度的增加,采出矿石辉长岩、辉石岩含量逐渐降低,而橄辉岩含量逐渐提高,导致企业采用原工艺无法获得合格的铁精矿产品。为给红格中深部难选橄辉岩型钒钛磁铁矿石合理选矿工艺确定提供依据,在对矿石性质分析的基础上,进行了选铁试验研究。结果表明:矿石铁品位为14.75%、TiO2含量为5.59%,以钛磁铁矿形式存在的铁占总铁的55.05%;矿石破碎至-3 mm经湿式预选抛尾,可以获得铁品位为21.05%、回收率为83.61%的预选精矿,抛除产率为41.12%、铁品位为5.91%的废石;预选精矿经磨矿-弱磁选-搅拌磨再磨-弱磁粗选-磁团聚重选机精选,可以获得铁品位为57.25%、回收率为46.54%的精矿,铁精矿TiO2含量为9.55%。试验结果为该类低品位橄辉岩型钒钛磁铁矿石的高效开发利用提供了技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号