首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (Tg) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in Tg from the predicted values calculated using the Couchman–Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.  相似文献   

2.
Objective: To enhance the oral absorption of photosensitive amlodipine free base, which exhibits a slow dissolution rate and low permeability characteristics, an amorphous solid dispersion system was formulated and characterized.

Material and methods: The solid dispersion was prepared by dispersing the amlodipine free base in excess dextrin (1:10 by weight) using a spray-drying technique in the presence of a minimum amount (0.9% w/w) of SLS as an absorption enhancer. The dextrin-based solid dispersion of amlodipine (Amlo-SD) was evaluated in term of formulation, characterization and in vivo absorption study, as well as the spray-drying process was also optimized.

Results and discussion: The Amlo-SD particles were spherical with a smooth surface and an average particle size of 12.9 μm. Amlodipine was dispersed in an amorphous state and its content remained uniform in the Amlo-SD. The physicochemical stability of the Amlo-SD was maintained at room temperature for 6 months and the photostability was considerably improved. The dissolution of the Amlo-SD was much faster than that of amlodipine at pH 1.2 and 6.8. Amlo-SD produced significantly higher plasma concentrations of amlodipine in rats than amlodipine alone. Amlo-SD with and without SLS provided 2.8- and 2.0-fold increase in AUC, respectively: the difference seems to be attributed to a permeability enhancement effect by SLS.

Conclusion: The Amlo-SD with SLS system is a potential formulation option for amlodipine.  相似文献   

3.
Drug on-line circulation dissolution system with near infrared spectrophotometer for dissolution determination was reported in this paper and subsequently partial least squares (PLS) calibration model was established for concentration prediction of Baicalin in solid dispersion. When the main factor number in PLS calibration model was 6, the correlation coefficients of PLS calibration samples and prediction ones were all 0.9999 and the relative standard deviations were 0.69% and 1.10%, respectively, which showed good robustness and predictability. Combining drug circulation dissolution system with the PLS calibration model, dissolution of Baicalin in raw material drug and solid dispersion were obtained at different times. The results indicated that the dissolution property of Baicalin in solid dispersion (especially at the early time) had been significantly improved. The accumulated dissolution of Baicalin in the solid dispersion at 45 min reached nearly 40%, increasing by 15% compared with raw material drug (about 25%). The aforementioned PLS model associated with drug circulation dissolution system provided a simple, accurate and on-line support for dissolution determination of drug, especially at the early time of rapid dissolution.  相似文献   

4.
Solid dispersion systems have been widely used to enhance dissolution rate and oral bioavailability of poorly water-soluble drugs. However, the formulation process development and scale-up present a number of difficulties which has greatly limited their commercial applications. In this study, solid dispersions (SDs) of desloratadine (DSL) with povidone (PVP) and crospovidone (cPVP) were prepared by spray coating technique. The process involved the spray application of 96% ethanol solution of DSL and PVP/cPVP, and subsequent deposition of the coprecipitates onto microcrystalline cellulose pellets during drying by air flow in a mini spray coater. The results from the present study demonstrated that the spray coating process is efficient in preparing SDs with enhanced drug dissolution rate and it is highly efficient in organic solvent removal. Both PVP and cPVP greatly improved drug dissolution rate by SDs, with PVP showing better solubilization capability. Very fast drug dissolution rate is achieved from SDs containing PVP regardless of differences in K grade. SD with smaller particles of cPVP have higher drug dissolution rate in comparison to the cPVP with larger particles. Results from physical state characterization indicate that DSL in SDs exist in the amorphous (high free-energy) state which is probably stabilized by PVP/cPVP. After 6-month accelerated stability study, DSL remains amorphous, while PVP and cPVP act as anti-plasticizing agents, offering efficient steric hindrance for nucleation and crystal growth.  相似文献   

5.
Identification of lead compounds with higher molecular weight and lower aqueous solubility has become increasingly prevalent with the advent of high throughput screening. Poor aqueous solubility of these lipophilic compounds can drastically affect the dissolution rate and subsequently the drug absorbed in the systemic circulation, imposing a significant burden of time and money during drug development process. Various pre-formulation and formulation strategies have been applied in the past that can improve the aqueous solubility of lipophilic compounds by manipulating either the crystal lattice properties or the activity coefficient of a solute in solution or both, if possible. However, despite various strategies available in the armor of formulation scientist, solubility issue still remains an overriding problem in the drug development process. It is perhaps due to the insufficient conceptual understanding of solubility and dissolution phenomenon that hinders the judgment in selecting suitable strategy for improving aqueous solubility and/or dissolution rate. This article, therefore, focuses on (i) revisiting the theoretical and mathematical concepts associated with solubility and dissolution, (ii) their application in making rationale decision for selecting suitable pre-formulation and formulation strategies and (iii) the relevant research performed in this field in past decade.  相似文献   

6.
Context: Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system.

Objectives: The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production.

Methods: Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment.

Results and discussion: XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies.

Conclusions: An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.  相似文献   


7.
Simvastatin has low aqueous solubility resulting in low oral bioavailability (5%) and thus presents a challenge in formulating a suitable dosage form. To improve the aqueous solubility, a solid dispersion formulation of Simvastatin was prepared by lyophilization utilizing skimmed milk as a carrier. Six different formulations were prepared with varying ratios of drug and carrier and the corresponding physical mixtures were also prepared. The improvement of amorphous state through solid dispersion was confirmed by differential scanning calorimetry and X-ray diffraction studies. The optimum drug-to-carrier ratio of 1:9 enhanced solubility nearly 30-fold as compared to pure drug. In-vitro drug release studies exhibited a cumulative release of 86.69% as compared to 25.19% for the pure drug. Additionally, scanning electron microscopy studies suggested the conversion of crystalline Simvastatin to an amorphous form. In a Triton-induced hyperlipidemia model, a 3-fold increase in the lipid lowering potential was obtained with the reformulated drug as compared to pure drug. These results suggest that solid dispersion of Simvastatin using skimmed milk as carrier is a promising approach for oral delivery of Simvastatin.  相似文献   

8.
Objective: This study aimed to evaluate kinetic solubility advantage of amorphous etoricoxib solid dispersions prepared with three water soluble polymers and correlate it with solid state and supersaturated drug solution stabilization potential of these polymers.

Methods: Amorphous solid dispersions (ASDs) of etoricoxib were prepared with polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and hydroxyethyl cellulose (HEC) at 70:30w/w ratio and characterized for glass transition temperature (Tg), miscibility and intermolecular interactions. Kinetic solubility profiles of amorphous etoricoxib and its ASDs were determined in water at 37 °C. Solid-state stability was assessed by enthalpy relaxation studies at a common degree of undercooling of around 19.0 °C at 0% RH. Recrystallization behavior of supersaturated drug solution was evaluated in the absence and presence of pre-dissolved polymer at 37 °C.

Results: Amorphous etoricoxib exhibited rapid solid-to-solid transition to yield a solubility advantage of merely 1.5-fold in water. Among the ASDs, etoricoxib-PVP dispersion exhibited maximal “peak” (2-fold) and “plateau” (1.8-fold) solubility enhancement, while etoricoxib-PVA dispersion could only sustain the “peak” solubility achieved by amorphous etoricoxib. In contrast, etoricoxib-HEC dispersion displayed no solubility advantage. The rank order for solid state and supersaturated solution stabilization followed a similar trend of amorphous etoricoxib?Conclusion: Dissolution behavior of ASDs is influenced by concomitantly occurring solid phase changes, thus understanding these processes independently can enable assessment of the predominant route of drug crystallization and stabilization by the polymer.  相似文献   

9.
Objective: A novel tablet formulation containing an amorphous solid dispersion (ASD) of elacridar hydrochloride was developed with the purpose to resolve the drug’s low solubility in water and to conduct proof-of-concept clinical studies.

Significance: Elacridar is highly demanded for proof-of-concept clinical trials that study the drug’s suitability to boost brain penetration and bioavailability of numerous anticancer agents. Previously, clinical trials with elacridar were performed with a tablet containing elacridar hydrochloride. However, this tablet formulation resulted in poor and unpredictable absorption which was caused by the low aqueous solubility of elacridar hydrochloride.

Methods: Twenty four different ASDs were produced and dissolution was compared to crystalline elacridar hydrochloride and a crystalline physical mixture. The formulation with highest dissolution was characterized for amorphicity. Subsequently, a tablet was developed and monitored for chemical/physical stability for 12 months at +15–25?°C, +2–8?°C and ?20?°C.

Results: The ASD powder was composed of freeze dried elacridar hydrochloride–povidone K30–sodium dodecyl sulfate (1:6:1, w/w/w), appeared fully amorphous and resulted in complete dissolution whereas crystalline elacridar hydrochloride resulted in only 1% dissolution. The ASD tablets contained 25?mg elacridar hydrochloride and were stable for at least 12 months at –20?°C.

Conclusions: The ASD tablet was considered feasible for proof-of-concept clinical studies and is now used as such.  相似文献   

10.
The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.  相似文献   

11.
Context: Naringenin (NRG), the aglycone flavonoid present in grapefruits, possesses anti-inflammatory, anti-carcinogenic, anti-lipid peroxidation and hepato-protective effects. However, it is poorly soluble in water and exhibits slow dissolution after oral ingestion, thus restricting its therapeutic efficacy.

Objective: With the aim to enhance the dissolution rate and oral bioavailability of NRG, solid dispersion technique has been applied using Soluplus® as carrier.

Methods: Solid dispersions of NRG were prepared by solvent evaporation and kneading methods using various ratios (1:4, 3:7, 2:3 and 1:1) of NRG:Carrier. Characterization of the optimized formulations was performed using Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The in vivo behavior of the optimized formulations was also investigated in Wistar Albino rats.

Results: NRG solid dispersion showed a significantly higher solubility and drug dissolution rate than pure NRG (p?Conclusion: Based on these results, it was concluded that solid dispersion technique markedly enhances the in vitro drug release and in vivo behavior of the grapefruit flavonoid NRG.  相似文献   

12.
Context: Pharmaceutical solid dispersions are known to be seriously affected by issues of aging and processing.

Objective: This study investigated the spectral patterns in the solid dispersions (SD) of Nifedipine/Soluplus/Kollidon SR and the feasibility of the methodology in identification and evaluation of the solid dispersions.

Methods: The SD samples were prepared by hot melt extrusion (HMESD), solvent-evaporation (SESD), and fusion-cooling (FCSD). In order to distinguish the different SD samples, a combined analytical strategy by FT-IR spectrum, Raman spectrum, and computational approaches (PCA and HCA) were developed to investigate the spectral patterns of the solid dispersions. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and dissolution test were employed as the reference characterization. The stability test under the accelerated condition was carried out to investigate the physical stability of the SDs.

Result: For the three prepared SDs, the evident differences on the dissolution behaviors and the trend of aging was observed. By means of the combined analytical strategy, the samples could be successfully identified in terms of their preparing techniques. The strength of hydrogen bonding interaction between NF and polymers decreased in the order of HMESD?>?SESD?>?FCSD. The results of the stability test indicated that the similarity factor f2 value of dissolution profile decreased in the order of HMESD?>?SESD?>?FCSD. HMESD exhibited a tendency of minimal changing on both dissolution behavior and spectral patterns.

Conclusion: The combined strategy suggested the possibility for identification of specific SDs in quality control and prediction of their trends on the aging.  相似文献   

13.
Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM?相似文献   

14.
Objective: The objective of this study was to design and prepare a novel solid dispersion using spray congealing to achieve fast and synchronous dissolution of bufalin, cinobufagin, and resibufogenin, three therapeutically complementary drugs.

Methods: The solid dispersion was characterized with dissolution, X-ray diffractometry, and fourier transform infrared spectroscopy after preparation and storage for four?weeks at different temperatures and relative humidity.

Results: It was found that all drugs were molecularly dispersed within matrix and had a significant enhancement (~4-fold higher) of dissolution rate. Furthermore, synchronized release of different drugs from a single carrier was achieved due to the highly molecular dispersibility and the excellent solubilization properties of F127. In addition, the solid dispersion was physically stable for at least four?weeks at controlled conditions. But for samples under stress conditions, the results showed that drug-rich phase was formed and storage temperature was the dominant factor in determining stability of the solid dispersion (SD).

Conclusions: These findings highlight the fitness of spray congealing to co-deliver multiple drugs, which open new perspectives for the development of more advanced combination of multiple therapeutic agents, presumably improving the bioavailability and therapeutic efficacy.  相似文献   

15.
Context: Along with other options, solid dispersions prepared by spray drying offer the possibility of formulating poorly soluble drugs in a rapidly dissolving format. As a wide range of potential excipients and solvents is available for spray drying, it is usually necessary to carry out a comprehensive array of studies to arrive at an optimal formulation.

Objective: To study the influence of formulation parameters such as co-sprayed excipients, solvents and packaging on the manufacture, in vitro performance and stability of spray-dried oral drug products using fenofibrate as a model drug.

Materials and methods: Solid dispersions of fenofibrate with different amorphous polymers were manufactured from two solvent systems by spray drying. These were characterized in terms of physicochemical properties, crystalline content and dissolution behavior in biorelevant media upon production and after storage in two packaging systems (Glass and Activ-Vials?).

Results and discussion: Spray drying the same formulation from two different solvents led to different physicochemical properties, dissolution behavior and long-term stability. The dissolution behavior and long-term stability also varied significantly among excipients. The viscosity of the polymer and the packaging material proved to be important to the long-term stability.

Conclusion: For spray-dried products containing fenofibrate, the excipients were ranked according to dissolution and stability performance as follows: PVP derivatives >> HPMC 2910/15, HPMCAS-MF, HP-β-CD >> PVP:PVA 2:8. EtOH 96% proved superior to acetone/water for spray drying with polymers. The results were used to propose a general approach to developing spray-dried formulations of poorly soluble drugs.  相似文献   

16.
The main objective of this study was to develop novel orally administrable tablets containing solid dispersion granules (SDG) of amorphous paclitaxel (PTX) prepared by fluid bed technology, and to evaluate its in vitro dissolution and in vivo pharmacokinetics (PK) in beagle dogs. The SDG were prepared using optimized composition by fluid bed technology, and characterized for solid-state properties. The release study of SDG tablet (SDG-T) in simulated gastric fluid showed a rapid release of PTX, reaching maximum dissolution within 20?min. Finally, the PK profile of SDG-T and a reference formulation Oraxol? (oral solution formulation used in Phase I clinical study) at a dose of 60?mg orally with co-administration of P-gp inhibitor HM38101, and Taxol® at a dose of 10?mg intravenously (i.v.) was investigated in beagle dogs. The mean absolute BA% of PTX following SDG-T and Oraxol? solution was 8.23 and 6.22% in comparison to i.v. administration of Taxol®. The relative BA% of PTX from SDG-T in comparison to Oraxol? solution was 132.25% at a dose of 60?mg following oral administration. In conclusion, we have successfully prepared PTX tablets with solid dispersion granules (SDG) of amorphous PTX using fluid bed technology that could provide plasma PTX concentration in the range of 10–150?ng/mL for a period of 24?h following oral administration in dogs with a P-gp inhibitor. Hence, this could be a promising formulation for PTX oral delivery and could be used in our intended clinical studies following pre-clinical efficacy studies.  相似文献   

17.
The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.  相似文献   

18.
Context: Cilnidipine (CN) is a novel dihydropyridine calcium antagonist that is practically insoluble in aqueous media and exhibits a low oral bioavailability or limited clinical efficacy.

Objective: This study investigated the effects of three commercial and chemically diverse polymers – PVP, PVP/VA and Soluplus – on crystallization tendency and in vitro dissolution profiles of CN in order to determine an optimum carrier for composing the preferred solid dispersion (SD) of CN.

Methods: All these co-evaporated systems were characterized up to 3 months by thermoanalytical (DSC), crystallographic (POM, PXRD), microscopic (SEM) and spectroscopic (FTIR) techniques.

Results: The results showed that the polymers could be sorted by their effects of inhibiting CN crystallization in the ascending order: Soluplus, PVP/VA, PVP. The sequence was in accordance with that of the strength of drug–polymer hydrogen bonds revealed by FTIR spectra. It could be ascribed to relative hydrogen-bonding acceptor strengths of N-vinylpyrrolidone moiety in the polymer molecules. On the other hand, all the SDs showed enhanced dissolution profiles compared to pure CN alone. On their effects of enhancing CN dissolution, the polymers could be sorted in the descending order: Soluplus, PVP, PVP/VA.

Conclusions: It implied that the dissolution behavior of CN could bear a close relationship to both hydration capacity and hydrogen-bonding interaction tendency of moieties of the polymers. It might suggest an optimal formulation for CN comprising both PVP and Soluplus.  相似文献   


19.
Purpose: The purpose of this study is to determine the process parameters of the laboratory-scale spray dryer affecting the solubility behavior and physical stability of solid dispersions.

Methods: Solid dispersions of the model drug (nilvadipine or nifedipine) and hypromellose (HPMC) (w/w: 1/1) were prepared using the laboratory-scale spray dryer. As process parameters, nitrogen flow rate, sample concentration and pump speed were investigated. The samples were characterized by dissolution tests, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscope (SEM), and nanoscale thermal analysis (Nano-TA). The physical stability was monitored after 7 months storage at 25°C.

Results: Solubility behavior and physical stability were improved by setting the low nitrogen flow rate and high sample concentration. DSC showed that the physical state depends on the spray drying conditions, whereas, every sample showed the similar morphology from SEM results. The difference of solubility behavior and physical stability were found to come from the microstructural phase separation of the spray dried particles using a novel analytical technique (Nano-TA).

Conclusions: This study demonstrated that nitrogen flow rate and sample concentration should be the critical parameters for the enhancements of the solubility and physical stability of solid dispersions.  相似文献   

20.
Novel solid dispersions of oleanolic acid-polyvinylpolypyrrolidone (OLA-PVPP SDs) were designed and prepared to improve the apparent solubility of drug, as well as to improve the stability, fluidity and compressibility of SDs. Disintegrable OLA-PVPP SDs were then evaluated both in vitro and in vivo. DSC, XRD, IR and SEM analysis proved the formation of OLA-PVPP SD and its amorphous state. The results of fluidity study, moisture absorption test and stability test showed that OLA-PVPP SD with good fluidity and qualified stability was successfully obtained. Meanwhile excellent dissolution rate was achieved for in vitro studies; dissolution test showed that ~50–75% of OLA was dissolved from SDs within the first 10?min, which is about 10–15 times of free OLA. In vivo study indicated that the formation of solid dispersion could largely improve the absorption of OLA, resulting in a much shorter Tmax (p?Cmax (p?0→∞ of OLA-PVPP SDs (1:6) were 155.4?±?37.24?h·ng/mL compared to the 103.11?±?26.69?h·ng/mL and 94.92?±?13.05?h·ng/mL of OLA-PVPP physical mixture (1:6) and free OLA, respectively. These proved PVPP could be a promising carrier of solid dispersions and was industrially feasible alternative carrier in the manufacture of solid dispersions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号