首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with the inverse dynamics simulation of underactuated mechanical systems relying on servo constraints. The servo-constraint problem of discrete mechanical systems is governed by differential–algebraic equations (DAEs) with high index. We propose a new index reduction approach, which makes possible the stable numerical integration of the DAEs. The new method is developed in the framework of a specific crane formulation and facilitates a reduction from index five to index three and even to index one. Particular attention is placed on the special case in which the reduced index-1 formulation is purely algebraic. In this case the system at hand can be classified as differentially flat system. Both redundant coordinates and minimal coordinates can be employed within the newly developed approach. The success of the proposed method is demonstrated with two representative numerical examples.  相似文献   

2.
An approach to solve finite time horizon suboptimal feedback control problems for partial differential equations is proposed by solving dynamic programming equations on adaptive sparse grids. A semi-discrete optimal control problem is introduced and the feedback control is derived from the corresponding value function. The value function can be characterized as the solution of an evolutionary Hamilton–Jacobi Bellman (HJB) equation which is defined over a state space whose dimension is equal to the dimension of the underlying semi-discrete system. Besides a low dimensional semi-discretization it is important to solve the HJB equation efficiently to address the curse of dimensionality. We propose to apply a semi-Lagrangian scheme using spatially adaptive sparse grids. Sparse grids allow the discretization of the value functions in (higher) space dimensions since the curse of dimensionality of full grid methods arises to a much smaller extent. For additional efficiency an adaptive grid refinement procedure is explored. The approach is illustrated for the wave equation and an extension to equations of Schrödinger type is indicated. We present several numerical examples studying the effect the parameters characterizing the sparse grid have on the accuracy of the value function and the optimal trajectory.  相似文献   

3.
《国际计算机数学杂志》2012,89(15):3507-3524
In the paper, we show some new convergence conditions on waveform relaxation (WR) for general differential-algebraic equations (DAEs). The main conclusion is that the convergence conditions on index r+1 can be derived from that of index r, in which the corresponding system is composed by ordinary differential equations if r=0. The approach of analysing relaxation process is novel for WR solutions of DAEs. It is also the first time to give the convergence conclusions for general index systems of DAEs in the WR field.  相似文献   

4.
5.
On reachability and minimum cost optimal control   总被引:1,自引:0,他引:1  
Questions of reachability for continuous and hybrid systems can be formulated as optimal control or game theory problems, whose solution can be characterized using variants of the Hamilton-Jacobi-Bellman or Isaacs partial differential equations. The formal link between the solution to the partial differential equation and the reachability problem is usually established in the framework of viscosity solutions. This paper establishes such a link between reachability, viability and invariance problems and viscosity solutions of a special form of the Hamilton-Jacobi equation. This equation is developed to address optimal control problems where the cost function is the minimum of a function of the state over a specified horizon. The main advantage of the proposed approach is that the properties of the value function (uniform continuity) and the form of the partial differential equation (standard Hamilton-Jacobi form, continuity of the Hamiltonian and simple boundary conditions) make the numerical solution of the problem much simpler than other approaches proposed in the literature. This fact is demonstrated by applying our approach to a reachability problem that arises in flight control and using numerical tools to compute the solution.  相似文献   

6.
This paper describes the functionality and implementation of COOPT. This software package implements a direct method with modified multiple shooting type techniques for solving optimal control problems of large-scale differential–algebraic equation (DAE) systems. The basic approach in COOPT is to divide the original time interval into multiple shooting intervals, with the DAEs solved numerically on the subintervals at each optimization iteration. Continuity constraints are imposed across the subintervals. The resulting optimization problem is solved by sparse sequential quadratic programming (SQP) methods. Partial derivative matrices needed for the optimization are generated by DAE sensitivity software. The sensitivity equations to be solved are generated via automatic differentiation.COOPT has been successfully used in solving optimal control problems arising from a wide variety of applications, such as chemical vapor deposition of superconducting thin films, spacecraft trajectory design and contingency/recovery problems, and computation of cell traction forces in tissue engineering.  相似文献   

7.
In this paper, an efficient hybrid approximation scheme for solving optimal control problems governed by integro‐differential equations is proposed. The current approach is based on a generalization of the hybrid of block‐pulse functions and Legendre's polynomials. An upper bound for the generalized hybrid functions with respect to the maximum norm is acquired and its convergence is demonstrated. The optimal control problem under study is transcribed to a mathematical programming one. Two illustrative examples are considered to verify the capability and reliability of the proposed procedure.  相似文献   

8.
In this paper, we consider the efficient and reliable solution of distributed optimal control problems governed by parametrized elliptic partial differential equations. The reduced basis method is used as a low-dimensional surrogate model to solve the optimal control problem. To this end, we introduce reduced basis spaces not only for the state and adjoint variable but also for the distributed control variable. We also propose two different error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. The reduced basis optimal control problem and associated a posteriori error bounds can be efficiently evaluated in an offline–online computational procedure, thus making our approach relevant in the many-query or real-time context. We compare our bounds with a previously proposed bound based on the Banach–Ne?as–Babu?ka theory and present numerical results for two model problems: a Graetz flow problem and a heat transfer problem. Finally, we also apply and test the performance of our newly proposed bound on a hyperthermia treatment planning problem.  相似文献   

9.
This study addresses control‐oriented modeling and control design of tensegrity–membrane systems. Lagrange's method is used to develop a control‐oriented model for a generic system. The equations of motion are expressed as a set of differential‐algebraic equations (DAEs). For control design, the DAEs are converted into second‐order ordinary differential equations (ODEs) based on coordinate partitioning and coordinate mapping. Because the number of inputs is less than the number of state variables, the system belongs to the class of underactuated nonlinear systems. A nonlinear adaptive controller based on the collocated partial feedback linearization (PFL) technique is designed for system deployment. The stability of the closed‐loop system for the actuated coordinates is studied using the Lyapunov stability theory. Because of system complexity, numerical tests are used to conduct stability analysis for the dynamics of the underactuated coordinates, which represents the system's zero dynamics. For the tensegrity–membrane systems studied in this work, analytical proof of zero dynamics stability remains an open theoretical problem. An H controller is implemented for rapid stabilization of the system at the final deployed configuration. Simulations are conducted to test the performance of the two controllers. The simulation results are presented and discussed in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Computing differential invariants of hybrid systems as fixedpoints   总被引:1,自引:0,他引:1  
We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose right-hand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our algorithm computes the required differential invariants. As a means for combining local differential invariants into global system invariants in a sound way, our fixedpoint algorithm works with a compositional verification logic for hybrid systems. With this compositional approach we exploit locality in system designs. To improve the verification power, we further introduce a saturation procedure that refines the system dynamics successively with differential invariants until safety becomes provable. By complementing our symbolic verification algorithm with a robust version of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout maneuvers in air traffic management and collision avoidance in train control and car control.  相似文献   

11.
In this paper, we study hybrid fuzzy differential equation initial value problems (IVPs). We consider the problem of finding their numerical solutions by using a recent characterization theorem of Bede for fuzzy differential equations. We prove a corollary to Bede’s characterization theorem and give a characterization theorem for hybrid fuzzy differential equation IVPs. Then we prove that any suitable numerical method for ODEs can be applied piecewise to numerically solve hybrid fuzzy differential equation IVPs. Numerical examples are provided which connect the new results with previous findings.  相似文献   

12.
The linear partially observed discrete-continuous (hybrid) stochastic controllable system described by differential equations with measures is considered. The optimal filtering equations in the form of generalized Kalman filter are obtained in the case of non-anticipating control. This result could be a theoretical basis for the optimal control in stochastic hybrid systems with incomplete information.  相似文献   

13.
用演化算法求解抛物型方程扩散系数的识别问题   总被引:3,自引:1,他引:3  
基于演化算法给出了一类求解参数识别反问题的一般方法,该方法表明只要找到好的、求解相应的正问题的数值方法,演化算法就可以用于求解此类反问题。设计有效的求解反问题的演化算法的关键是寻找一种适合反问题的解空间的编码表示形式、适当的适应值函数形式以及有效的计算正问题的数值方法。该文结合算法、传统的求解反问题的工方法和正则化技术,设计了一类求解参数识别反问题的方法。为验证此类方法,将其用于求解一维扩散方程的  相似文献   

14.
15.
This paper presents a state estimation approach for an uncertain linear equation with a non-invertible operator in Hilbert space. The approach addresses linear equations with uncertain deterministic input and noise in the measurements, which belong to a given convex closed bounded set. A new notion of a minimax observable subspace is introduced. By means of the presented approach, new equations describing the dynamics of a minimax recursive estimator for discrete-time non-causal differential-algebraic equations (DAEs) are presented. For the case of regular DAEs it is proved that the estimator’s equation coincides with the equation describing the seminal Kalman filter. The properties of the estimator are illustrated by a numerical example.  相似文献   

16.
《国际计算机数学杂志》2012,89(8-9):651-662
The numerical solution of differential–algebraic equations (DAEs) using the Chebyshev series approximation is considered in this article. Two different problems are solved using the Chebyshev series approximation and the solutions are compared with the exact solutions. First, we calculate the power series of a given equation system and then transform it into Chebyshev series form, which gives an arbitrary order for solving the DAE numerically.  相似文献   

17.
Weighted residual methods (WRM) afford a viable approach to the numerical solution of differential equations. Application of WRM results in the transformation of differential equations into systems of algebraic equations in the modal coefficients. This suggests that WRM can be used as a tool for reducing optimal control problems to mathematical programming problems. Thereby, the optimal control problem is replaced by the minimization of a cost function of static coefficients subject to algebraic constraints. The motivation for this approach lies in the profusion of sophisticated computational algorithms and digital computer codes for the solution of mathematical programming problems. In this note the solution of optimal control problems as mathematical programming problems via WRM is illustrated. The example presented indicates that reasonable accuracy is obtained for modest computational effort. While the simplest types of modes-polynomials and piecewise constants-are employed in this note, the ideas delineated can be applied in conjunction with cubic splines for the generation of computational algorithms of enhanced efficiency.  相似文献   

18.
We study optimal control problems for general unstructured nonlinear differential-algebraic equations of arbitrary index. In particular, we derive necessary conditions in the case of linear-quadratic control problems and extend them to the general nonlinear case. We also present a Pontryagin maximum principle for general unstructured nonlinear DAEs in the case of restricted controls. Moreover, we discuss the numerical solution of the resulting two-point boundary value problems and present a numerical example. This research was supported through the Research-in-Pairs Program at Mathematisches Forschungsinstitut Oberwolfach. V. Mehrmann’s research was supported by Deutsche Forschungsgemeinschaft, through Matheon, the DFG Research Center “Mathematics for Key Technologies” in Berlin.  相似文献   

19.
The problem of determining an optimal measurement scheduling for identification of unknown parameters in distributed systems described by partial differential equations is discussed. The discrete-scanning observations are performed by an optimal selection of measurement data from spatially fixed sensors. In the adopted approach, the sensor scheduling problem is converted to a constrained optimal control problem. In this framework, the control value represents the selected sensor configuration. Thus the control variable is constrained to take values in a discrete set and switchings between sensors may occur in continuous time. By applying the control parameterization enhancing transform technique, a computational procedure for solving the optimal scanning measurement problem is obtained. The numerical scheme is then tested on a computer example regarding an advection-diffusion problem.  相似文献   

20.
We consider mechanical systems where the dynamics are partially constrained to prescribed trajectories. An example for such a system is a building crane with a load and the requirement that the load moves on a certain path.Enforcing this condition directly in form of a servo constraint leads to differential-algebraic equations (DAEs) of arbitrarily high index. Typically, the model equations are of index 5, which already poses high regularity conditions. If we relax the servo constraints and consider the system from an optimal control point of view, the strong regularity conditions vanish, and the solution can be obtained by standard techniques.By means of the well-known \(n\)-car example and an overhead crane, the theoretical and expected numerical difficulties of the direct DAE and the alternative modeling approach are illustrated. We show how the formulation of the problem in an optimal control context works and address the solvability of the optimal control system. We discuss that the problematic DAE behavior is still inherent in the optimal control system and show how its evidences depend on the regularization parameters of the optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号