首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential levels of exposure to indoor overheating in an urban environment are assessed for vulnerable social housing residents. Particular focus is given to the synergistic effects between summertime ventilation behaviour, indoor temperature and air pollutant concentration in relation to energy retrofit and climate change. Three different types of social housing are investigated (1900s’ low-rise, 1950s’ mid-rise and 1960s’ high-rise). The case study dwellings are located in Central London and occupied by vulnerable individuals (elderly and/or people suffering from ill-health or mobility impairment). Indoor temperature monitoring suggests that occupants are already exposed to some degree of overheating; the highest levels of overheating occur in 1960s’ high-rise tower blocks. The thermal and airflow performance simulation of a mid-floor flat in the 1960s’ block under the current and projected future climate indicates that improved natural ventilation strategies may reduce overheating risk to a certain extent, with night cooling and shading being slightly more effective than all-day rapid ventilation. However, their potential may be limited in future due to high external temperatures and the undesired ingress of outdoor pollutants. This highlights the need for the development of combined strategies aiming to achieve both indoor thermal comfort and air quality.  相似文献   

2.
ABSTRACT

There is growing awareness of the overheating risks in new-build properties in the UK. However, this tends to be considered a problem principally for the southern regions in the UK, only becoming a serious issue in the north of England in the medium-term and in the long-term for Scotland. This notion tends to be largely predicated upon climate change predictions, differences in latitude and summer air temperatures. This paper describes the results from Building Performance Evaluation (BPE) studies over a two-year period from 26 occupied new-build homes across Scotland which demonstrated incidences of overheating. Results suggest that low-energy buildings are susceptible to overheating despite northerly latitudes, with 54% of houses studied overheating for more than six months annually, and 27% of homes overheating for less than 10% of the year. Evidence indicated that commonly used prediction tools do not appear to anticipate overheating adequately. This paper maps common overheating causes due to design and the role of occupants, identifying the risks due to the regulatory system, prediction and procurement processes, and design and construction. A common finding was that design and occupancy factors appear to have a greater impact on overheating more than location and climatic factors.  相似文献   

3.
ABSTRACT

An indoor overheating assessment study of 101 London dwellings during summer 2009 is presented. The study included building surveys, indoor dry bulb temperature monitoring and a questionnaire survey on occupant behaviour, including the operation of passive and active ventilation, cooling and shading systems. A theoretical London housing stock comprising 3456 combinations of building geometry, orientations, urban patterns, fabric retrofit and external weather was simulated using the EnergyPlus thermal modelling software. A statistical meta-model of EnergyPlus was then built by regressing the independent variables (simulation input) against the dependent variables (overheating risk). The monitoring and questionnaire data were analysed to explore the relationship between self-reported behaviour and overheating, and to test the meta-model. The monitoring data indicated that London homes and, in particular, bedrooms are already at risk of overheating during hot spells under the current climate. Around 70% of respondents tended to open only one or no windows at night mainly due to security reasons. An improvement in the coefficient of determination (R2) values between measured temperature and meta-model predictions was obtained only for those dwellings where occupants reported actions that were in line with the modelling assumptions, thus highlighting the importance of occupant behaviour for overheating.  相似文献   

4.
Increasing reliance on air-conditioning to improve summertime comfort in dwellings results in higher energy bills, peak electricity demand and environmental issues. In pursuit of social equity, society needs to develop ways of improving cooling that are less reliant on air-conditioning. Designing homes to emphasize adaptive thermal comfort can reduce this reliance, particularly when combined with improved dwelling thermal performance. A multi-method evaluation of 10 low-income dwellings in the state of Victoria in Australia is presented, including low-energy and ‘standard-performance’ houses. The combination of performance monitoring and householder interviews reveals new insights for achieving summertime comfort. The low-energy houses without air-conditioning were both measured and perceived as more comfortable than the ‘standard-performance’ houses with air-conditioning. The low-energy households achieved improved personal thermal comfort through a combination of improved fabric performance augmented with adaptive comfort activities (e.g., opening/closing windows). This outcome reduces reliance on air-conditioning, reduces living costs and energy consumption, and improves environmental outcomes. There is a need to integrate lessons from adaptive thermal comfort theory and strategies into minimum building performance requirements and standards, as well as wider design strategies. It is evident that adaptive comfort has a role to play in a transition to a low-carbon housing future.  相似文献   

5.
The literature on the contribution of kerosene lighting to indoor air particulate concentrations is sparse. In rural Uganda, kitchens are almost universally located outside the main home, and kerosene is often used for lighting. In this study, we obtained longitudinal measures of particulate matter 2.5 microns or smaller in size (PM2.5) from living rooms and kitchens of 88 households in rural Uganda. Linear mixed‐effects models with a random intercept for household were used to test the hypotheses that primary reported lighting source and kitchen location (indoor vs outdoor) are associated with PM2.5 levels. During initial testing, households reported using the following sources of lighting: open‐wick kerosene (19.3%), hurricane kerosene (45.5%), battery‐powered (33.0%), and solar (1.1%) lamps. During follow‐up testing, these proportions changed to 29.5%, 35.2%, 18.2%, and 9.1%, respectively. Average ambient, living room, and kitchen PM2.5 levels were 20.2, 35.2, and 270.0 μg/m3. Living rooms using open‐wick kerosene lamps had the highest PM2.5 levels (55.3 μg/m3) compared to those using solar lighting (19.4 μg/m3; open wick vs solar, P=.01); 27.6% of homes using open‐wick kerosene lamps met World Health Organization indoor air quality standards compared to 75.0% in homes using solar lighting.  相似文献   

6.
ABSTRACT

As the 2003 European heatwave demonstrated, overheating in homes can cause wide-scale fatalities. With temperatures and heatwave frequency predicted to increase due to climate change, such events can be expected to become more common. Thus, investigating the risk of overheating in buildings is key to understanding the scale of the problem and in designing solutions. Most work on this topic has been theoretical and based on lightweight dwellings that might be expected to overheat. By contrast, this study collects temperature and air quality data over two years for vulnerable and non-vulnerable UK homes where overheating would not be expected to be common. Overheating was found to occur, particularly and disproportionately in households with vulnerable occupants. As the summers in question were not extreme and contained no prolonged heatwaves, this is a significant and worrying finding. The vulnerable homes were also found to have worse indoor air quality. This suggests that some of the problem might be solved by enhancing indoor ventilation. The collected thermal comfort survey data were also validated against the European adaptive model. Results suggest that the model underestimates discomfort in warm conditions, having implications for both vulnerable and non-vulnerable homes.  相似文献   

7.
ABSTRACT

New Zealand dwellings have thermal conditions managed with relatively light regulation. No minimum airtightness standards exist and historical increases in required insulation levels aimed to reduce winter heating energy consumption. A consequence of this policy is an increased potential for overheating in summer. There has been a steady increase in the use of heat pumps, risking heating energy savings being outweighed by cooling energy increases. Internal temperatures and humidity were monitored in the living spaces of three unoccupied, transportable houses over all four seasons of the Auckland climate. The houses are located on the same site and are of identical construction, apart from selected interventions which were tested to explore their potential to mitigate overheating. Results indicate that overheating can be extreme and long lasting. High internal temperatures are very closely connected with solar gains. Internal temperatures reached 32°C in autumn. Roof space temperatures reached 51°C in summertime. Interventions resulted in modest improvements and an airtight construction provided a small thermal benefit. A thermal model for the houses was developed using EnergyPlus and compared with actual measurements and the interventions. Early results point to the further need to reduce solar gain, increase roof-space ventilation and increase mass, where feasible.  相似文献   

8.
Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h?1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED)‐certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h?1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low‐VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low‐VOC homes. The mean and standard deviation of formaldehyde concentration was 33 μg/m3 and 22 μg/m3 for low‐VOC homes and 45 μg/m3 and 30 μg/m3 for conventional.  相似文献   

9.
The purpose of this paper is to evaluate the effects of a building parameter, namely ceiling configuration, on indoor natural ventilation. The computational fluid dynamics (CFD) code Phoenics was used with the RNG k? turbulence model to study wind motion and ventilation flow rates inside the building. All the CFD boundary conditions were described. The simulation results were first validated by wind tunnel experiment results in detail, and then used to compare rooms with various ceiling configurations in different cases. The simulation results generated matched the experimental results confirming the accuracy of the RNG k? turbulence model to successfully predict indoor wind motion for this study. Our main results reveal that ceiling configurations have certain effects on indoor airflow and ventilation flow rates although these effects are fairly minor.  相似文献   

10.
T. Kalema  M. Viot 《Indoor air》2014,24(1):71-80
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi‐room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature‐driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet‐based measurement system. The multi‐room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration.  相似文献   

11.
Humla Province is a remote mountainous region of northwest Nepal. The climate is harsh and the local people are extremely poor. Most people endure a subsistence culture, living in traditional housing. Energy for cooking and heating comes from fuelwood, supplies of which are diminishing. In order to improve the indoor environment and reduce fuelwood use, smokeless stoves are being introduced to replace the open fire in Humli homes. There is some concern, however, that comfort levels may not be as acceptable with these stoves. The aim of this research was therefore to investigate ways in which the comfort levels in traditional Humli housing might be improved using simple and low cost strategies. Temperature data was recorded in four rooms of a traditional Humli home over a 12-day period and used with fuelwood data to validate a TRNSYS simulation model of the house. This model was then used to evaluate the impact on comfort levels in the house of various energy conservation strategies using PMV and PPD indicators. As a single strategy, it was found that reducing infiltration of outside air was likely to be more effective than increasing the insulation level in the ceilings. The most successful strategy, however, was the creation of sunspaces at the entrances to the living rooms. This strategy increased average internal temperatures by 1.7 and 2.3 °C. In combination with increased insulation levels, the sunspaces reduced comfort dissatisfaction levels by over 50%.  相似文献   

12.
The ongoing “Indoor Environment and Children’s Health” (IECH) study investigates the environmental risk factors in homes and their association with asthma and allergy among children aged 1–5 years. As part of the study, the homes of 500 children between 3 and 5 years of age were inspected. The selected children included 200 symptomatic children (cases) and 300 randomly selected children (bases). As part of the inspection, the concentration of carbon dioxide in the bedrooms of the children was continuously measured over an average of 2.5 days. The ventilation rates in the rooms during the nights when the children were sleeping in the room were calculated using a single-zone mass balance for the occupant-generated CO2. The calculated air change rates were log-normally distributed (R2 > 0.98). The geometric mean of the air change rates in both the case and the base group was 0.46 air changes per hour (h−1; geom. SD = 2.08 and 2.13, respectively). Approximately 57% of both cases and bases slept at a lower ventilation rate than the minimum required ventilation rate of 0.5 h−1 in new Danish dwellings. Only 32% of the bedrooms had an average CO2 concentration below 1000 ppm during the measured nights. Twenty-three percent of the rooms experienced at least a 20-minute period during the night when the CO2 concentration was above 2000 ppm and 6% of the rooms experienced concentrations above 3000 ppm. The average air change rate was higher with more people sleeping in the room. The air change rate did not change with the increasing outdoor temperature over the 10-week experimental period. The calculation method provides an estimate of the total airflow into the bedroom, including airflows both from outdoors and from adjacent spaces. To study the accuracy of the calculated air change rates and their deviation from the true outside air change rates, we calculated CO2 concentrations at different given air change rates using an indoor air quality and ventilation model (Contam). Subsequently we applied our calculation procedure to the obtained data. The air change rate calculated from the generated CO2 concentrations was found to be between 0% and 51% lower than the total air change rate defined in the input variables for the model. It was, however, higher than the true outside air change rate. The relative error depended on the position of the room in relation to the adjacent rooms, occupancy in the adjacent room, the nominal air change rate and room-to-room airflows.  相似文献   

13.
Previous research has shown that indoor benzene levels in homes with attached garages are higher than homes without attached garages. Exhaust ventilation in attached garages is one possible intervention to reduce these concentrations. To evaluate the effectiveness of this intervention, a randomized crossover study was conducted in 33 Ottawa homes in winter 2014. VOCs including benzene, toluene, ethylbenzene, and xylenes, nitrogen dioxide, carbon monoxide, and air exchange rates were measured over four 48‐hour periods when a garage exhaust fan was turned on or off. A blower door test conducted in each garage was used to determine the required exhaust fan flow rate to provide a depressurization of 5 Pa in each garage relative to the home. When corrected for ambient concentrations, the fan decreased geometric mean indoor benzene concentrations from 1.04 to 0.40 μg/m3, or by 62% (P<.05). The garage exhaust fan also significantly reduced outdoor‐corrected geometric mean indoor concentrations of other pollutants, including toluene (53%), ethylbenzene (47%), m,p‐xylene (45%), o‐xylene (43%), and carbon monoxide (23%) (P<.05) while having no impact on the home air exchange rate. This study provides evidence that mechanical exhaust ventilation in attached garages can reduce indoor concentrations of pollutants originating from within attached garages.  相似文献   

14.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

15.
ABSTRACT

Research in UK and elsewhere has highlighted that older people are particularly vulnerable to negative health effects of overheating. This paper examines the magnitude, causes, preparedness and remedies for addressing the risk of summertime overheating in four case study residential care and extra-care settings across the UK, spanning different building types, construction and age. An interdisciplinary approach is adopted, drawing from building science and social science methods, including temperature monitoring, building surveys, and interviews with design and management teams. The findings suggest that overheating is a current and prevalent risk in the case study schemes, yet currently little awareness or preparedness exists to implement suitable and long-term adaptation strategies (e.g., external shading). There was a perception from designers to managers, that cold represents a bigger threat to older occupants’ health than excessive heat. A lack of effective heat management was found across the case studies that included unwanted heat gains from the heating system, confusion in terms of responsibilities to manage indoor temperatures, and conflicts between window opening and occupant safety. Given that care settings should provide protection against risks from cold and hot weather, design, management and care practices need to become better focused towards this goal.  相似文献   

16.
The role of ventilation in preventing tuberculosis (TB) transmission has been widely proposed in infection control guidance. However, conclusive evidence is lacking. Modeling suggested the threshold of ventilation rate to reduce effective reproductive ratio (ratio between new secondary infectious cases and source cases) of TB to below 1 is corresponding to a carbon dioxide (CO2) level of 1000 parts per million (ppm). Here, we measured the effect of improving ventilation rate on a TB outbreak involving 27 TB cases and 1665 contacts in underventilated university buildings. Ventilation engineering decreased the maximum CO2 levels from 3204 ± 50 ppm to 591-603 ppm. Thereafter, the secondary attack rate of new contacts in university dropped to zero (mean follow-up duration: 5.9 years). Exposure to source TB cases under CO2 >1000 ppm indoor environment was a significant risk factor for contacts to become new infectious TB cases (P < .001). After adjusting for effects of contact investigation and latent TB infection treatment, improving ventilation rate to levels with CO2 <1000 ppm was independently associated with a 97% decrease (95% CI: 50%-99.9%) in the incidence of TB among contacts. These results show that maintaining adequate indoor ventilation could be a highly effective strategy for controlling TB outbreaks.  相似文献   

17.
Nitrogen dioxide (NO2), a by‐product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three‐armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high‐efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre‐intervention and at 1 week and 3 months post‐intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow‐up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes.  相似文献   

18.
Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.  相似文献   

19.
The UK is predicted to experience warmer summers in the future, but the domestic building stock in England was not designed to cope with this change. The Standard Assessment Procedure (SAP) 2009 is used to assess the current state of the English building stock in terms of its vulnerability to overheating. The English Housing Survey 2009 provided data for 16 150 dwellings which are weighted to represent the housing stock. SAP predicts 82% of dwellings are currently at ‘slight’ risk of overheating and 41% at medium to high risk. If summer temperatures become 1.4°C warmer, then 99% of properties are predicted to have a medium to high risk of overheating. Several potential adaptations to the housing stock were considered to reduce overheating. Although ventilation strategies had the largest positive effect, the use of solar shading and shutters which allow secure ventilation could reduce vulnerability to overheating in the current climate. In a warmer climate, although some dwellings would still be at slight risk, the results suggest that solar shading strategies could reduce the percentage of those at medium to high risk to 6%. Future energy efficiency programmes will need to include adaptation measures to prevent overheating.  相似文献   

20.
Living in cold conditions poses a risk to health, in particular to low-income, fuel-poor households. Improving the energy efficiency of the housing stock may bring multiple positive health gains through improved indoor temperatures and reduced fuel consumption. This study used a multilevel interrupted time-series approach to evaluate a policy-led energy-performance investment programme. Long-term monitoring data were collected for intervention and control households at baseline (n?=?99) and follow-up (n?=?88), creating a dataset with 15,771 data points for a series of daily-averaged hydrothermal outcome variables. The study found that the intervention raised indoor air temperature by on average 0.84?K as compared with control households, thereby bringing the majority of indoor temperature measurements within the ‘healthy’ comfort zone of 18–24°C, while average daily gas usage dropped by 37%. External wall insulation was the most effective measure to increase indoor air temperature. The greatest increases were found in the evening and at night, in the bedroom, and in British steel-framed buildings. No evidence was found that the intervention substantially increased indoor relative humidity levels when accompanied by mechanical ventilation. The study concludes that the multilevel interrupted time-series approach offers a useful model for evaluating housing improvement programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号