首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

2.
Hong He  Changbin Zhang  Yunbo Yu 《Catalysis Today》2004,90(3-4):191-materials
The selective catalytic reduction (SCR) of NO by C3H6 in excess oxygen was evaluated and compared over Ag/Al2O3 and Cu/Al2O3 catalysts. Ag/Al2O3 showed a high activity for NO reduction. However, Cu/Al2O3 showed a high activity for C3H6 oxidation. The partial oxidation of C3H6 gave surface enolic species and acetate species on the Ag/Al2O3, but only an acetate species was clearly observed on the Cu/Al2O3. The enolic species is a more active intermediate towards NO + O2 to yield—NCO species than the acetate species on the Ag/Al2O3 catalyst. The Ag and Cu metal loadings and phase changes on Al2O3 support can affect the activity and selectivity of Ag/Al2O3 and Cu/Al2O3 catalysts, but the formation of enolic species is the main reason why the activity of the Ag/Al2O3 catalyst for NO reduction is higher than that of the Cu/Al2O3 catalyst.  相似文献   

3.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

4.
The effectiveness of Ag/Al2O3 catalyst depends greatly on the alumina source used for preparation. A series of alumina-supported catalysts derived from AlOOH, Al2O3, and Al(OH)3 was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–vis) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, O2, NO + O2-temperature programmed desorption (TPD), H2-temperature programmed reduction (TPR), thermal gravimetric analysis (TGA) and activity test, with a focus on the correlation between their redox properties and catalytic behavior towards C3H6-selective catalytic reduction (SCR) of NO reaction. The best SCR activity along with a moderated C3H6 conversion was achieved over Ag/Al2O3 (I) employing AlOOH source. The high density of Ag–O–Al species in Ag/Al2O3 (I) is deemed to be crucial for NO selective reduction into N2. By contrast, a high C3H6 conversion simultaneously with a moderate N2 yield was observed over Ag/Al2O3 (II) prepared from a γ-Al2O3 source. The larger particles of AgmO (m > 2) crystallites were believed to facilitate the propene oxidation therefore leading to a scarcity of reductant for SCR of NO. An amorphous Ag/Al2O3 (III) was obtained via employing a Al(OH)3 source and 500 °C calcination exhibiting a poor SCR performance similar to that for Ag-free Al2O3 (I). A subsequent calcination of Ag/Al2O3 (III) at 800 °C led to the generation of Ag/Al2O3 (IV) catalyst yielding a significant enhancement in both N2 yield and C3H6 conversion, which was attributed to the appearance of γ-phase structure and an increase in surface area. Further thermo treatment at 950 °C for the preparation of Ag/Al2O3 (V) accelerated the sintering of Ag clusters resulting in a severe unselective combustion, which competes with SCR of NO reaction. In view of the transient studies, the redox properties of the prepared catalysts were investigated showing an oxidation capability of Ag/Al2O3 (II and V) > Ag/Al2O3 (IV) > Ag/Al2O3 (I) > Ag/Al2O3 (III) and Al2O3 (I). The formation of nitrate species is an important step for the deNOx process, which can be promoted by increasing O2 feed concentration as evidenced by NO + O2-TPD study for Ag/Al2O3 (I), achieving a better catalytic performance.  相似文献   

5.
Catalytic reduction of NO by propene in the presence of oxygen was studied over SnO2-doped Ga2O3–Al2O3 prepared by sol–gel method. Although SnO2-doped Ga2O3–Al2O3 gave lower NO conversion than Ga2O3–Al2O3 in the absence of H2O, the activity was enhanced considerably by the presence of H2O and much higher than that of Ga2O3–Al2O3. The presence of SnO2 and Ga2O3–Al2O3 species having intimate Ga–O–Al bondings was found to be essential for the promotional effect of H2O. The promotional effect of H2O was interpreted by the following two reasons. The first one is the removal of carbonaceous materials deposited on the catalyst surface by H2O. The other is the selective inhibition by H2O of the reaction steps resulting in propene oxidation to COx without reducing NO.  相似文献   

6.
An In2O3/Al2O3 catalyst shows high activity for the selective catalytic reduction of NO with propene in the presence of oxygen. The presence of SO2 in feed gas suppressed the catalytic activity dramatically at high temperatures; however it was enhanced in the low temperature range of 473–573 K. In TPD and FT-IR studies, the formation of sulfate species on the surface of the catalyst caused an inhibition of NOX adsorption sites, and the absorbance ability of NO was suppressed by the presence of SO2, and the amount of ad-NO3 species decreased obviously. This leads to a decrease of catalytic activity at higher temperatures. However, addition of SO2 enhanced the formation of carboxylate and formate species, which can explain the promotional effect of SO2 at low temperature, because active C3H6 (partially oxidized C3H6) is crucial at low temperature.  相似文献   

7.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

8.
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV–VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV–VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV–VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O2). The low activity for N2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can, therefore, be related to the presence of metallic silver, which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2.  相似文献   

9.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

10.
NO reduction to N2 by C3H6 was investigated and compared over Cu-Al2O3 catalysts prepared by four different methods, namely, the conventional impregnation, co-precipitation, evaporation of a mixed aqueous solution, and xerogel methods. It was found that the catalyst preparation method as well as the Cu content exerts a significant influence on catalyst activity. For the catalysts prepared by the first three preparation methods, with the increase of Cu content from 5 to 15 wt%, the maximum NO reduction conversion decreased slightly, but the temperature for the maximum NO reduction also decreased. For the xerogel Cu-Al2O3, there was a significant decrease in NO reduction conversion with the increase of Cu content from 5 to 10 wt%. In the absence of water vapour, the Cu-Al2O3 catalyst prepared by the impregnation method exhibited the highest activity toward NO reduction. The purity of alumina support was found to be a crucial factor to the activity of the Cu-Al2O3 catalyst prepared by impregnation. In the presence of water vapour, a substantial decrease in NO conversion was observed for the Cu-Al2O3 catalysts prepared by the first three methods, especially for the impregnated Cu-Al2O3 catalyst. In contrast, the presence of water vapour showed only a minor influence on the xerogel 5 wt% Cu-Al2O3 and it showed the highest activity for NO reduction in the presence of 20% water vapour. The xerogel 5 wt% Cu-Al2O3 catalyst was also found to be less affected by a 5 wt% sulfate deposition than the Cu-Al2O3 catalysts prepared by other methods.  相似文献   

11.
The effects of carbon dioxide on the dehydrogenation of C3H8 to produce C3H6 were investigated over several Cr2O3 catalysts supported on Al2O3, active carbon and SiO2. Carbon dioxide exerted promoting effects only on SiO2-supported Cr2O3 catalysts. The promoting effects of carbon dioxide over a Cr2O3/SiO2 catalyst were to enhance the yield of C3H6 and to suppress the catalyst deactivation.  相似文献   

12.
In this study, Pd/Al2O3 and Pd/BaO/Al2O3 metallic monoliths were used to investigate the effect of BaO in C2H4 and CO oxidation as well as in NO reduction. A FT-IR gas analyser was used to study the activity of the catalysts. Several activity experiments carried out with dissimilar feedstreams revealed that BaO enhances CO and C2H4 oxidation as well as NO reduction reactions in rich conditions. This effect is due to BaO, which causes a decrease in the ethene poisoning of palladium. In lean conditions BaO is present in the form of Ba(OH)2 which reacts with oxidised NO releasing water. Therefore, NO was stored during the lean reaction.  相似文献   

13.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

14.
The reduction of NO by propene in the presence of excess oxygen over mechanical mixtures of Au/Al2O3 with a bulk oxide has been investigated. The oxides studied were: Co3O4, Mn2O3, Cr2O3, CuO, Fe2O3, NiO, CeO2, SnO2, ZnO and V2O5. Under lean C3H6-SCR conditions, these oxides (with the exception of SnO2) convert selectively NO to NO2. When mechanically mixed with Au/Al2O3, the Mn2O3 and Co3O4 oxides and, to a much greater extent, CeO2 act synergistically with this catalyst greatly enhancing its SCR performance. It was found that their synergistic action is not straightforwardly related to their activity for NO oxidation to NO2. The exhibited catalytic synergy may be due to the operation of either remote control or a bifunctional mechanism. In the later case, the key intermediate must be a short-lived compound and not the NO2 molecule in gas-phase.  相似文献   

15.
More than 0.22 mmol of isolated VO4 species of V2O5/Al2O3 exhibited the highest evolution of the partial oxidation products (alcohol and ketone) in the oxidation of cyclohexane and cyclopentane. The conversion of cyclohexane and the selectivity of the partial oxidation products were achieved to be 0.49% and 85% over 0.8 g of 3.5 wt.% V2O5/Al2O3, respectively, where the K/A ratio was 6.2. In addition, V2O5/Al2O3 can selectively oxidize various hydrocarbons in the liquid phase by the one-step oxygen atom insertion to CH bond. The order of priority was tertiary carbon > secondary carbon > primary carbon > benzene ring.  相似文献   

16.
The performance of unpromoted and MOx-(M: alkali (earth), transition metal and cerium) promoted Au/Al2O3 catalysts have been studied for combustion of the saturated hydrocarbons methane and propane. As expected, higher temperatures are required to oxidize CH4 (above 400 °C), compared with C3H8 (above 250 °C). The addition of various MOx to Au/Al2O3 improves the catalytic activity in both methane and propane oxidation. For methane oxidation, the most efficient promoters to enhance the catalytic performance of Au/Al2O3 are FeOx and MnOx. For C3H8 oxidation a direct relationship is found between the catalytic performance and the average size of the gold particles in the presence of alkali (earth) metal oxides. The effect of the gold particle size becomes less important for additives of the type of transition metal oxides and ceria. The results suggest that the role of the alkali (earth) metal oxides is related to the stabilization of the gold nanoparticles, whereas transition metal oxide and ceria additives may be involved in oxygen activation.  相似文献   

17.
The adsorption of HCN on, its catalytic oxidation with 6% O2 over 0.5% Pt/Al2O3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N2O, NO and NO2, and some residual adsorbed N-containing species were oxidized to NO and NO2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NOx in the products. The co-feeding of H2O and C3H6 had little, if any effect on the total HCN conversion, but C3H6 addition did increase the conversion to NO and decrease the conversion to NO2, perhaps due to the competing presence of adsorbed fragments of reductive C3H6. Evidence is also presented that introduction of NO and NO2 into the reactant gas mixture resulted in additional reaction pathways between these NOx species and HCN that provide for lean-NOx reduction coincident with HCN oxidation.  相似文献   

18.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


19.
Oxidation of propene and propane to CO2 and H2O has been studied over Au/Al2O3 and two different Au/CuO/Al2O3 (4 wt.% Au and 7.4 wt.% Au) catalysts and compared with the catalytic behaviour of Au/Co3O4/Al2O3 (4.1 wt.% Au) and Pt/Al2O3 (4.8 wt.% Pt) catalysts. The various characterization techniques employed (XRD, HRTEM, TPR and DR-UV–vis) revealed the presence of metallic gold, along with a highly dispersed CuO (6 wt.% CuO), or more crystalline CuO phase (12 wt.% CuO).

A higher CuO loading does not significantly influence the catalytic performance of the catalyst in propene oxidation, the gold loading appears to be more important. Moreover, it was found that 7.4Au/CuO/Al2O3 is almost as active as Pt/Al2O3, whereas Au/Co3O4/Al2O3 performs less than any of the CuO-containing gold-based catalysts.

The light-off temperature for C3H8 oxidation is significantly higher than for C3H6. For this reaction the particle size effect appears to prevail over the effect of gold loading. The most active catalysts are 4Au/CuO/Al2O3 (gold particles less than 3 nm) and 4Au/Co3O4/Al2O3 (gold particles less than 5 nm).  相似文献   


20.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号