首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
煤与瓦斯突出是一种以煤体变形能与瓦斯膨胀能共同驱动的煤岩动力灾害,尽管突出的综合作用假说已被广泛认可,相比于瓦斯膨胀能,煤体变形能在突出中的作用总被忽视。为了确定煤体变形能在突出中是否可以被忽略,对霍多特和郑哲敏的研究(突出能量领域的代表性成果)开展了系统回顾与讨论,认为霍多特提出的突出激发能量判据以煤体变形能为核心,而郑哲敏的数量级对比结果不能作为变形能可以被忽视的证据。大部分煤与瓦斯突出事故发生在构造煤层中,为揭示构造煤变形能在突出中的贡献,开展了煤体循环载荷实验与三轴破坏同步声发射监测实验,实验结果表明:与原生煤的线性、小变形特征不同,构造煤的加卸载曲线具有非线性、大变形的特征,构造煤的变形能与应力不再符合平方关系。基于土力学临界状态模型,构建了适用于构造煤非线性特征的变形能理论计算模型,该模型反映了煤体变形能与应力间的幂函数关系,确定了构造煤的幂指数主要为1.1~1.3,原生煤的幂指数主要为1.7~1.9,进一步表明构造煤的性质与土体更相似,而原生煤的性质更接近理想弹性体。尽管在相同应力水平下,构造煤的变形能更大,但构造煤在失稳后的对外释放能量很低,表现为损伤破碎时几乎不产生声...  相似文献   

2.
基于煤与瓦斯延时突出机理,分析了石门揭煤过程煤与瓦斯延时突出动力源,阐述了地应力、瓦斯压力和煤岩体物理力学性质在延时突出过程中的作用及地应力、瓦斯压力时含瓦斯煤体流变失稳及能量变化关系、并分析了延时突出动力源形成的能量聚集过程.分析结果表明,煤与瓦斯延时突出动力源包括作用力和作用能量,作用力大致有煤层地应力、煤体中的瓦斯压力、外作用等;作用能量大致有瓦斯内能、煤岩体弹性潜能、煤体物理力学性质等,延时突出动力源形成过程是复杂而又多变的,瓦斯、地应力是煤与瓦斯延时突出中的主要作用力,瓦斯内能、地应力积聚的潜能是主要能量.因此降低瓦斯压力、瓦斯内能和地应力是减少煤与瓦斯延时突出的根本办法.在此基础上,提出了防治煤与瓦斯延时突出的三个准则,即分阶段释放动力源原则、应力转移原则和安全防护原则.  相似文献   

3.
大平煤矿煤与瓦斯突出特征及影响因素分析   总被引:2,自引:0,他引:2  
安全高效生产是煤矿工作的重中之重,整理分析了大平煤矿历年的煤与瓦斯突出资料,总结出了煤与瓦斯突出的基本特征。运用瓦斯地质理论分析了影响大平煤矿煤与瓦斯突出的主要因素为地质构造、高能瓦斯、煤层埋深以及构造煤,尤其是褶皱和断裂构造及高能瓦斯赋存。认为地质构造通过控制瓦斯赋存、煤体结构类型来控制突出的发生,是发生突出的主导因素;高能瓦斯作为突出发生的能量条件,是影响突出的重要原因;而大平煤矿煤层埋深与煤层瓦斯含量和瓦斯压力关系明显,瓦斯垂直分带性强,是煤与瓦斯突出的另一个原因;同时大平煤矿构造煤成层发育,属易突出煤层,为煤与瓦斯突出创造了物质条件,是该矿发生煤与瓦斯突出的关键因素。这些原因为今后防治煤与瓦斯突出工作指明了方向。  相似文献   

4.
基于能量理论,分析了瓦斯突出瞬间能量的变化,构建了包括煤岩弹性能、瓦斯膨胀能在内的煤与瓦斯突出的正效应数理模型及煤岩抵抗瓦斯突出能量的负效应模型。根据煤岩应力应变试验,拟合得出了煤岩不同变形阶段力与变形量之间的关系,结合正、负效应耦合模型,计算出了寺河矿不同煤体结构组合下煤与瓦斯突出发生的临界瓦斯压力值。结果表明:在其他条件相似的情况下,随着软煤比例的增加,临界瓦斯压力值呈指数减小,煤与瓦斯突出的可能性大幅增加。利用该方法可以对煤与瓦斯突出临界值进行快速判断,从而采取有效措施。  相似文献   

5.
石门揭煤煤与瓦斯延时突出过程及其动力源分析   总被引:3,自引:0,他引:3  
基于煤与瓦斯突出机理,本文分析了石门揭煤过程煤与瓦斯延时突出全过程及其动力源,阐述了地应力和瓦斯压力在延时突出过程中的作用及其对含瓦斯煤体流变失稳及能量变化关系,并分析了延时突出动力源形成的能量聚集过程.结果表明,煤与瓦斯延时突出不但与卸压区、应力集中区的强度、长度有关,而且与作用在煤体上的应力峰值和瓦斯压力等因素有关;煤与瓦斯延时突出动力源大致有煤层地应力、煤体中的瓦斯及瓦斯内能、煤体物理力学性质及外作用等,延时突出动力源形成过程是复杂而又多变的,瓦斯、地应力是煤与瓦斯延时突出中的主要能量,因此降低瓦斯压力、瓦斯内能和地应力,是减少煤与瓦斯延时突出的根本办法.  相似文献   

6.
保护层开采保护范围的极限瓦斯压力判别准则   总被引:2,自引:0,他引:2       下载免费PDF全文
针对传统的保护层开采保护范围的残余瓦斯压力判别准则在实际应用中的局限性,结合某煤矿上保护层开采工程,提出了一种新的保护层开采保护范围的极限瓦斯压力判别准则。根据煤与瓦斯突出的固气耦合失稳理论,通过引入煤体孔隙率与渗透率的动态变化模型,建立了有限变形下煤与瓦斯突出的固气动态耦合失稳模型;针对该工程实例,得到了被保护层发生煤与瓦斯突出的极限瓦斯压力值,从而建立了以极限瓦斯压力值为判定值的保护层开采保护范围的判别准则。研究结果表明,该工程的保护层开采保护范围的极限瓦斯压力判别准则的判定值为0.25 MPa,该准则反映了地应力、瓦斯压力与煤的结构对煤与瓦斯突出的综合作用。  相似文献   

7.
基于煤岩破裂损伤理论和气固耦合方法,针对不同地应力和不同瓦斯压力条件,采用RFPA2D-Flow数值计算软件对煤与瓦斯突出发生、发展过程进行数值研究,获得了煤体裂纹孕育、扩展演化规律及突出孔洞变化特征,并结合红阳二矿、西马煤矿突出实例进行验证分析。研究表明:地应力与煤与瓦斯突出发生所需的最小瓦斯压力呈线性反比关系,地应力越高突出所需的瓦斯压力越小;高地应力条件下煤与瓦斯突出的初始阶段,煤体主要在剪-拉应力作用下,形成以"–"型和"I"型裂纹组成的网格型裂纹,宏观破坏呈楔形分布,而较低地应力条件下煤与瓦斯突出的初始阶段,煤体主要在拉应力作用下,形成"I"型裂纹,宏观破坏呈环状分布;突出过程中地应力的作用使煤体破坏以楔形方式发展,瓦斯的作用使煤体破坏以弧形方式发展,突出孔洞的最终形状由地应力和瓦斯共同决定。  相似文献   

8.
向斜构造煤与瓦斯突出机理探讨   总被引:16,自引:0,他引:16       下载免费PDF全文
韩军  张宏伟  霍丙杰 《煤炭学报》2008,33(8):908-913
为了确定向斜构造煤与瓦斯突出机理,从应力、煤体结构特征和瓦斯压力及含量等方面对向斜构造进行了分析.利用弹性梁的应力、应变理论,分析了煤层与围岩组成的软硬互层系统的层间滑动特征和应力-应变特征、煤体宏观与微观结构特征、瓦斯压力与瓦斯含量分布特征.研究表明,向斜构造的两翼与轴部中性层以上为高压区,中性层以下为相对低压区,距离向斜轴部越近,主应力及其梯度越大.向斜构造形成过程中的层间滑动造成煤体原生结构遭到破坏,煤体强度降低,煤层增厚.向斜构造部位瓦斯生成量亦相对较高,同时中性层以上煤(岩)体中的裂隙和孔隙被压密、压实而闭合,阻止了下部瓦斯的向上逸散,中性层以下的张性作用下的断裂或折裂面、煤体中的割理、节理等降低了解吸压力,形成良好的瓦斯聚集空间,也有助于煤层中吸附瓦斯的解吸,使得向斜轴部瓦斯含量较高.向斜构造同时具备的高地应力、高瓦斯压力(含量)和构造煤发育等3个因素是其发生煤与瓦斯突出的主要原因.  相似文献   

9.
沈春明  汪东  张浪  郭建行  林柏泉 《煤炭学报》2015,40(9):2097-2104
针对钻孔内水射流切槽诱发煤体失稳喷出问题,探讨了在水射流破煤与瓦斯压力作用下的煤体切槽诱导失稳喷出机制,并推导了诱导失稳发生的判据公式。基于古汉山矿10631运输巷二1煤层,采用ANSYS软件数值模拟分析了切槽煤体应力分布及演化特征;并基于裂纹扩展试验分析了水射流冲击煤岩断裂特性;最后,进行了现场试验与应用。数值模拟和实验室试验结果表明:围压条件下,切槽煤体周围会形成应力显著变化区,且随切槽深度的增加而扩大和增强;大直径水射流冲击破断煤岩分为初期响应、稳定破坏和断裂突变3个阶段,煤岩破裂具有瞬时性。现场试验应用表明,水射流切槽会诱发煤体失稳移动,失稳喷出现象与理论分析较吻合,切槽诱导失稳钻孔的累计和瞬时瓦斯排放量是常规钻孔的3~4倍,有利于提高钻孔瓦斯抽采能力和防治矿井煤与瓦斯突出。  相似文献   

10.
煤的电性参数与瓦斯突出危险性之间关系研究   总被引:3,自引:0,他引:3  
采用理论和实验相结合的方法,对煤的电性参数随煤的物理力学性质、吸附瓦斯、承受应力的变化关系和变化幅度进行了研究,得出了煤的电性参数随决定煤与瓦斯突出的3个因素之间变化的定量关系,从而为建立煤体电磁波衰减场与突出危险性的关系模型提供了理论基础。  相似文献   

11.
瓦斯含量在突出过程中的作用分析   总被引:3,自引:0,他引:3  
王刚  程卫民  谢军  周刚 《煤炭学报》2011,36(3):429-434
为了研究瓦斯含量在煤与瓦斯突出过程中的作用,采用能量法分析煤与瓦斯突出过程中的能量关系、掘进进尺为L时煤体的应力条件与弹性变形潜能和煤层瓦斯积聚内能的释放功,研究了煤与瓦斯突出时的抛出功、破碎功和瓦斯突出的动能,得到了煤与瓦斯突出的能量条件。并以贵州化处煤矿二采区突出为例,对煤与瓦斯突出的能量条件进行分析。研究结果表明:煤与瓦斯突出的能量来源为瓦斯内能,瓦斯内能做功比弹性潜能做功大。煤层的地应力越大,坚固性系数越小,发生突出时所需煤层的瓦斯含量越小;在地应力一定的情况下,进尺越大突出时临界瓦斯含量越小;煤层的厚度对突出时的临界瓦斯含量的影响不明显。  相似文献   

12.
晨光煤矿煤与瓦斯突出危险性预测   总被引:4,自引:4,他引:0  
煤与瓦斯突出是威胁煤矿安全的重要灾害之一。煤与瓦斯突出矿井的突出危险性预测评估工作,对规范矿井生产、科学制定矿井瓦斯灾害防治措施、指导保证生产安全有着十分重要的意义。通过对煤的各项单项指标的测定(包括相对瓦斯压力、煤的破坏类型、煤的坚固性系数、煤样的瓦斯放散初速度),结合煤的初始释放瓦斯膨胀能指标对煤层的突出危险性进行综合性预测。  相似文献   

13.
煤与瓦斯突出过程中能量耗散规律的研究   总被引:18,自引:5,他引:18  
蒋承林  俞启香 《煤炭学报》1996,21(2):173-178
对煤与瓦斯突出过程中煤体质点内的能量耗散过程用热力学定律进行了分析;论证了由地应力引起的弹性潜能最先消耗在煤体的破碎上,为谋体内瓦斯能的释放创造了条件;在突出过程中起决定作用的是煤体本身释放的初始释放瓦斯膨胀能.通过突出模拟及测定表明,受地应力破坏后的含瓦斯煤体在卸压初始时刻确实有一个释放瓦斯膨胀能的能量峰,并且该能量峰的大小与揭煤时的动力现象显著与否密切相关.  相似文献   

14.
通过对煤层煤样的各项单项指标的测定,包括相对瓦斯压力,煤的破坏类型,煤的坚固性系数,煤样的瓦斯放散初速度,最后结合煤的初始释放瓦斯膨胀能指标对煤层的突出危险性进行综合性预测。  相似文献   

15.
煤与瓦斯突出强度能量评价模型   总被引:6,自引:0,他引:6       下载免费PDF全文
从煤与瓦斯突出过程中能量耗散类型与岩石爆破机理的相似性出发,利用新表面学说和热力学定律分别计算了突出煤体的破碎功和突出瓦斯的膨胀内能,建立了煤与瓦斯突出强度能量评价模型。利用该模型对1960-2010年间38起煤与瓦斯突出强度评价分析表明,一半左右突出的瓦斯膨胀能比破碎功大1~2个数量级,仅用抛出煤体的质量来评价煤与瓦斯突出的强度是不合理的;煤与瓦斯突出强度能量评价模型综合考虑了突出过程中煤体的破碎功与瓦斯膨胀能,将煤与瓦斯突出释放的总能量折合成TNT当量,依据不同数量级TNT当量标准,将煤与瓦斯突出强度类型划分为C类突出(小于1 t的TNT当量值),B类突出(1~10 t的TNT当量值)和A类突出(大于10 t 的TNT当量值)3类更具合理性。  相似文献   

16.
中国能源发展战略   总被引:1,自引:1,他引:1  
曹毅然 《中国矿业》1994,3(4):13-17
本文提出我国的能源发展应采取多种能源结构的战略,即开发利用煤炭资源的同时,应开发利用天然气、煤层气、核电、太阳能、风能、地热能、生物能等多种能源资源。  相似文献   

17.
徐乐华  蒋承林 《煤炭技术》2014,33(12):185-187
对同一个煤样分别充入不同压力的二氧化碳/甲烷/氮气进行初始释放瓦斯膨胀能测定试验,研究二氧化碳/甲烷/氮气条件下煤样的初始释放瓦斯膨胀能与瓦斯压力的关系,并分析二氧化碳/甲烷/氮气条件下的煤层突出危险性。结果表明:对于同种气体,煤样的初始释放瓦斯膨胀能与吸附平衡压力均成正相关关系,吸附平衡压力越大,煤样的初始释放瓦斯膨胀能越大,煤层突出危险性越大;对于不同气体,在吸附平衡压力相等的情况下,充二氧化碳的煤样具有较大的初始释放瓦斯膨胀能,突出危险性较大,充甲烷的次之,充氮气的最小。这一结论可以为解释煤矿现场突出和实验室突出模拟过程中的一些现象提供重要的依据。  相似文献   

18.
随着中国、日本、韩国、印度等亚太地区主要天然气消费国能源结构的不断调整和天然气消费量的持续攀升,亚太地区天然气供需格局日趋紧张。在此背景下,中国天然气安全供给形势不容乐观,主要表现为:天然气进口依赖程度加深,安全供给存在地缘政治风险;进口天然气被动接受定价,贸易环节面临严峻挑战;天然气供给潜力不足,国外资源获取能力尚显不足。为提升中国天然气安全供给能力,中国应深化与周边国家的管道天然气合作,加快LNG进口来源多样化;争取亚太地区天然气定价权,提升天然气贸易主导权;防控天然气消费增长井喷,加快形成天然气调峰储备体系。  相似文献   

19.
煤层释放瓦斯膨胀能研究   总被引:1,自引:0,他引:1  
针对煤与瓦斯突出危险性预测问题,对煤层释放瓦斯膨胀能进行了深入研究。根据瓦斯膨胀能基本计算方法,以煤层瓦斯流动压力场分布规律为基础,分别建立了煤壁释放瓦斯膨胀能和钻孔释放瓦斯膨胀能理论方程式;并应用 MATLAB 数值模拟软件,进一步对钻孔释放瓦斯膨胀能进行了分析计算。结果表明:钻孔释放瓦斯膨胀能在释放时间前3s内下降急聚,且该能量大小受煤层瓦斯压力影响最大,受透气性系数影响次之,受瓦斯含量系数影响最小。钻孔释放瓦斯膨胀能真实反映了实际煤层瞬间释放瓦斯的能力,矿井在煤层瓦斯压力测定时,通过实测钻孔释放瓦斯膨胀能,可以准确预测煤层突出危险性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号