首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
研究了淬火处理(900℃~1010℃)对AMS6308钢(wt.%:0.1C、1.0Cr、1.97Ni、3.25Mo、2.0Cu、0.08V、0.83Si、Fe余量。)微观组织和力学性能的影响,结果表明,试验钢在915℃×0.5h油冷+(-80℃)×1h+205℃×2h回火后得到最佳的力学性能(Rm=1135MP,Rp0.2=880MP,A=16%,Z=63%,AKV2>125J,HRC=35)。  相似文献   

2.
彭涛  曹建春  杨钢  赵吉庆 《钢铁》2016,51(8):64-69
 采用SEM、TEM和力学性能测试等手段,研究了预备热处理对AMS 6308钢组织及性能的影响。结果表明,980 ℃以下正火,随着温度的提高,M6C碳化物逐渐溶解,晶粒细小,淬火后马氏体板条均匀细小,碳化物呈球状或椭球状弥散分布在板条界和晶界上,碳化物体积分数和位错密度较高,强度和冲击值逐渐增加。980 ℃以上正火,M6C碳化物溶解增多,晶粒开始长大,淬火后马氏体板条束尺寸也长大,碳化物体积分数和位错密度下降,强度和冲击值降低。推荐的预备热处理制度:正火温度为980~1 010 ℃,回火温度为680~700 ℃,经性能热处理后,AMS 6308钢体现出良好的强韧性匹配。  相似文献   

3.
利用扫描电镜、透射电镜和硬度测试等方法研究了不同退火工艺对 AMS 6308钢硬度及组织的影响。结果表明,提高退火温度,马氏体板条内位错密度降低,M6 C 的尺寸逐渐增加,硬度下降,但在750℃以上退火,进入二相区,空冷后产生二次马氏体,硬度回升。延长退火时间,马氏体板条回复逐渐充分,硬度开始下降较快,16 h后组织变化不明显,M6 C 的含量变化不大,硬度变化也不大。退火软化程度主要受板条内位错密度的下降以及M6 C 的粗化控制。推荐退火温度选择700~720℃,退火时间不低于16 h,720℃退火软化效果最佳。  相似文献   

4.
为了研究回火温度、析出相对含Mo-V-Ti钢组织与性能的影响,试验采用550 mm轧机对含Mo-V-Ti钢轧制后进行完全淬火,然后在630~710℃不同的温度下进行回火。结果表明,高温回火后,钢的组织由回火索氏体和少量贝氏体组成,组织中发生回复和再结晶,钢的强韧性匹配发生变化。在670℃以下回火时产生的析出相主要为Ti、V和Mo复合的碳氮化合物和V、Mo复合的碳氮化合物,随着回火温度的提高,产生了新的析出相Fe、Mn和Mo及V合金渗碳体,析出相对钢的强韧性有重要影响。  相似文献   

5.
Cu时效硬化钢中Cu的析出   总被引:6,自引:0,他引:6  
杨才福  张永权 《钢铁》2005,40(4):62-65,75
研究了Cu在工业试制的高强度船体钢中的时效析出行为及其时效硬化规律。结果表明:500~550℃时效,硬度随时间增加很快达到峰值,然后再降低;时效温度对Cu的硬化效果起决定性作用。1.5~2h时效硬化峰值温度约为500℃。在硬化峰值温度下,大量Cu析出相在位错线和板条界上析出,尺寸小于5nm,产生强烈沉淀强化作用。过时效状态下,Cu析出相发生明显长大,析出相形态由球状颗粒转变为杆状或短棒状,沉淀强化作用也随之减弱。  相似文献   

6.
黄贞益  肖亚  侯清宇  王萍  章小峰 《钢铁》2015,50(8):71-76
 结合现场实际情况,为改善T91组织性能而利于后期加工,利用金相观察、扫描电镜及显微硬度试验等手段,研究分析300~780 ℃不同回火温度及回火冷却速度下T91钢的组织及硬度变化规律。试验结果表明,300~400 ℃回复程度低,硬度难以降低;500~600 ℃为碳化物析出敏感区间,大量碳化物在基体弥散析出,在此区间硬度较高且有上升趋势;随着温度从600升高到780 ℃,碳化物沿晶界充分析出,硬度降低。随着回火冷却速度的增加,硬度逐渐降低,以5 ℃/min缓慢冷却经过500~600 ℃敏感区间,碳化物弥散析出,基体硬度较高;以780 ℃回火保温和较快冷却速度(50 ℃/min)进行冷却处理后,快速通过碳化物析出敏感区间,碳化物在基体析出少,硬度明显降低,综合性能满足后续加工。  相似文献   

7.
通过对热轧低碳贝氏体钢Q685不同温度的回火工艺处理,研究了强度、延伸率、冲击性能以及微观组织的变化.结果表明,回火温度对Q685钢的性能产生明显影响.当回火温度为650℃时,屈服强度和抗拉强度分别达到758 MPa和835 MPa,延伸率达到30%,明显高于热轧后的试样;而随回火温度逐渐增加到720℃,性能则显著降低...  相似文献   

8.
回火参数对40Cr3MoV钢性能和组织的影响   总被引:2,自引:0,他引:2  
研究了回火温度和时间对40Cr3Mo钢力学性能的影响。同回火时间相比,回火温度对力学性能的作用要显得多。在500℃以下回火时,力学性能随回火温度的提高变化缓慢,当回火温度高于580℃时,随回火温度的提高,强度急剧下降,韧性迅速增加。  相似文献   

9.
10.
通过向传统矿用圆环链钢23MnNiCrMo54中加入质量分数为0.29%的V以提高钢的综合性能,检测了不同回火温度下含V试验钢的各项力学性能,利用SEM、TEM和物理化学相分析等方法对试验钢的基体组织和析出相进行了表征,分析了试验钢的强韧化机制。结果表明,含0.29%V试验钢在不同温度回火后的强度均有大幅提升,随回火温度升高,含V试验钢的强度变化经历3个阶段:强度先是下降,当回火温度达到500℃时开始出现强度平台,继续提高回火温度至600℃后,强度又开始下降。结合物理化学相分析和TEM表征,认为强度平台的出现是因为大量析出的纳米级碟片状VC颗粒带来沉淀强化作用;-20℃冲击吸收能量随回火温度变化曲线呈“W”型,Fe3C在晶界析出和杂质元素的偏聚是导致韧性低谷的原因。  相似文献   

11.
钟金红 《宽厚板》2008,14(1):24-29
本文主要研究了Cu作为强化合金元素使用时在模具钢PSOA中时效析出强化的规律,主要包括固溶温度、时效温度、时效时间对时效的影响规律,并通过电镜观察到了试样中析出的细小ε-Cu粒子,并据此验证相关结论。由于Cu强化元素的特殊性,此规律可以应用到所有Cu时效强化钢中。  相似文献   

12.
采用室温离子注入和低压电镜原位观察的方法,研究了注氢对国产ODS铁素体钢微观结构的影响.结果表明:原始未注氢ODS铁素体钢中存在有一定数量的(Fe,Cr)2O3,室温注氢后,(Fe,Cr)2O3无明显改变;但将其加热至450℃,(Fe,Cr)2O3即开始分解;到550℃时,部分(Fe,Cr)2O3消失,残余(Fe,Cr)2O3的成分也发生了改变.与此相反,原始未注氢ODS铁索体钢的微观结构在加热过程中却没有明显改变,(Fe,Cr)2O3并不分解.  相似文献   

13.
王晓英  颜慧成  仇圣桃 《钢铁》2016,51(10):54-61
 运用凝固传热模型,计算出了连铸坯在不同凝固阶段的冷却速率,对经典的BF微观偏析模型进行了修正,并以此为基础建立了由化学成分的不均匀性导致的Mn-Cr系齿轮钢淬透性带宽预测模型,分析了不同二次冷却强度对淬透性带宽的影响。由淬透性带宽预测模型得知,20CrMnTi连铸坯试样淬透性带宽呈抛物线状分布,淬透性带宽曲线在端淬距离0~15 mm范围内呈上升趋势,距离端淬距离超过15 mm时呈下降趋势,距离端淬约15 mm处试样的淬透性带宽取得最大值;适当提高二冷区冷却强度可以缩小连铸坯试样的最大淬透性带宽。  相似文献   

14.
齿轮钢的开发与生产   总被引:1,自引:0,他引:1  
自 2 0 0 1年以来南京钢铁集团有限公司相继开发了 2 0Cr、2 0CrMo、2 0CrMnTi等齿轮用钢 ,着重介绍了公司齿轮钢的开发与生产实践  相似文献   

15.
中水回用对钢铁工业水资源效率的影响   总被引:5,自引:0,他引:5  
给出了钢铁工业水的循环率μ和水的资源效率γ的表达式,得出了钢铁工业水的循环率μ和资源效率γ之间的关系。在此基础上,讨论了钢铁联合企业采用“中水回用”技术对提高水的资源效率的作用。  相似文献   

16.
白旭旭  杨树峰  刘威  李京社  梁雪 《钢铁》2019,54(12):35-41
 为了研究碲处理对钢中MnS夹杂物形貌的影响,利用SEM-EDS扫描电镜,研究了20CrMnTi钢中添加高纯碲粉后MnS夹杂物的改性效果。试验结果表明,碲处理使钢中夹杂物的平均长宽比由3.17降至1.83,球化效果较为明显;当碲硫比控制在0.33时,不同硫含量的钢中夹杂物形貌有明显差异,硫质量分数为0.21%的钢中,形成了MnS镶嵌在碲化物中的大型夹杂,而在硫质量分数为0.11%的钢中,形成了碲化物包裹MnS的复合夹杂;当碲硫比为3.21时,发现钢中出现了单独存在的高碲相,MnS外层的碲化物层也较厚,改性率仅为8.75%,这表明高碲硫比并不能提高硫化物改性的数量。  相似文献   

17.
采用热模拟实验方法研究了铌对Si-Mn系弹簧钢相变特征的影响,分析了NbC的形变诱导析出行为.结果表明:弹簧钢中添加微量铌,推迟了珠光体转变,马氏体转变的最小冷却速率由5℃·s-1变为3℃·s-1;细化了珠光体,改变了珠光体组织形貌,渗碳体片层变薄、形状变得不规则,出现弯曲、断续;含铌弹簧钢在850℃变形时发生了NbC的形变诱导析出,NbC的析出位置为珠光体中的铁素体片层内、珠光体球团边界和位错处,析出物颗粒直径为10~15nm,形状近似球形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号