首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王军  张红燕 《光电子快报》2017,13(3):214-216
In this work, indium nitride (InN) films were successfully grown on porous silicon (PS) using metal oxide chemical vapor deposition (MOCVD) method. Room temperature photoluminescence (PL) and field emission scanning electron microscopy (FESEM) analyses are performed to investigate the optical, structural and morphological properties of the InN/PS nanocomposites. FESEM images show that the pore size of InN/PS nanocomposites is usually less than 4 μm in diameter, and the overall thickness is approximately 40 μm. The InN nanoparticles penetrate uniformly into PS layer and adhere to them very well. Nitrogen (N) and indium (In) can be detected by energy dispersive spectrometer (EDS). An important gradual decrease of the PL intensity for PS occurs with the increase of oxidation time, and the PL intensity of PS is quenched after 24 h oxidization. However, there is a strong PL intensity of InN/PS nanocomposites at 430 nm (2.88 eV), which means that PS substrate can influence the structural and optical properties of the InN, and the grown InN on PS substrate has good optical quality.  相似文献   

2.
Photoluminescence origin of nanocrystalline SiC films   总被引:1,自引:0,他引:1  
The nanocrystalline SiC films were prepared on Si then annealed at 800℃ and 1 000℃ for 30 minutes (111) substrates by rf magnetron sputtering and in a vacuum annealing system. The crystal structure and crystallization of as-annealed SiC films were determined by the Fourier transform infrared (FIR) absorption spectra and the X-ray diffraction (XRD) analysis. Measurement of photoluminescence (PL) of the nanocrystalline SiC (nc-SiC) films shows that the blue light with 473 nm and 477 nm wavelengths emitted at room temperature and that the PL peak shifts to shorter wavelength side and the PL intensity becomes stronger as the annealing temperature decreases. The time-resolved spectrum of the PL at 477 nm exhibits a bi-exponential decay process with lifetimes of 600 ps and 5 ns and a characteristic of the direct band gap. The strong blue light emission with short PL lifetimes suggests that the quantum confinement effect of the SiC nanocrystals resulted in the radiative recombination of the direct optical transitions.  相似文献   

3.
Efficient and photostable ZnS‐passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were synthesized using reverse micelle chemistry. CdS:Mn/ZnS core/shell nanocrystals exhibited much improved luminescent properties (quantum yield and photostability) over organically (n‐dodecanethiol‐) capped CdS:Mn nanocrystals. This is the result of effective, robust passivation of CdS surface states by the ZnS shell and consequent suppression of non‐radiative recombination transitions. The dependence of photoluminescence (PL) intensity has been observed as a function of UV irradiation time for both organically and inorganically capped CdS:Mn nanocrystals. Whereas organically capped CdS:Mn nanocrystals exhibit a significant reduction of PL intensity, CdS:Mn/ZnS core/shell nanocrystals exhibit an increased PL intensity with UV irradiation. XPS (X‐ray photoelectron spectroscopy) studies reveal that UV irradiation of CdS:Mn/ZnS nanocrystals in air atmosphere induces the photo‐oxidation of the ZnS shell surface, leading to the formation of ZnSO4. This photo‐oxidation product is presumably responsible for the enhanced PL emission, serving as a passivating layer.  相似文献   

4.
Room-temperature photoluminescence (PL) has been studied in AlGaN/GaN superlattices and GaN epitaxial layers implanted with 1-MeV erbium at a dose of 3 × 1015 cm?2 and annealed in argon. The intensity of PL from Er3+ ions in the superlattices exceeds that for the epitaxial layers at annealing temperatures of 700–1000°C. The strongest difference (by a factor of ~2.8) in PL intensity between the epitaxial layers and the superlattices and the highest PL intensity for the superlattices are observed upon annealing at 900°C. On raising the annealing temperature to 1050°C, the intensity of the erbium emission from the superlattices decreases substantially. This circumstance may be due to their thermal destruction.  相似文献   

5.
In this article, we present a systematic study of the evolution of photoluminescence (PL) emission of Si nanocrystals with elaboration conditions. Si nanocrystals synthesised in SiO2 by ion implantation and annealing at 1100°C show a wide (0.3 eV) and a very intense PL emission centred at 1.5–1.7 eV, linked to the presence of the nanocrystals. The intensity of this emission shows a typical behaviour with the annealing time, with a fast transitory increase to reach an asymptotical saturation. There is a linear increase of the PL intensity at saturation with the dose. Two regimes are clearly observed for the evolution of the PL energy position as a function of the annealing time for different peak supersaturations (s): (i) for s<5%, there is a decrease transient followed by a saturation state of the maximum peak energy, and (ii) for s5% the PL energy presents an increase transient followed by a saturation state.  相似文献   

6.
《Solid-state electronics》2006,50(9-10):1529-1531
Photoluminescence (PL) of annealed porous silicon (PS) without and with nitrogen passivation has been investigated. The un-nitridated PS emits intense blue and green light, while that with passivation, emits only blue light and its intensity increases obviously. It is found that the PL intensity of the nitrified PS decreases with increasing temperature from 300 °C to 700 °C, but increases drastically after annealing at 800 °C and 900 °C, which might be due to the formation of Si–N bonds that passivates the non-radiative centers (Si dangling bonds) on the surface of PS samples. However, the intensity of the un-nitridated PS decreases continuously with increasing temperature from 300 °C to 900 °C, which might be due to desorption of hydrogen.  相似文献   

7.
Photoluminescence (PL), Raman scattering, and the Rutherford backscattering of α-particles were used to study the formation of the centers of radiative-recombination emission in the visible region of the spectrum on annealing of the SiO2 layers implanted with Ge ions. It was found that the Ge-containing centers were formed in the as-implanted layers, whereas the stages of increase and decrease in the intensities of PL bands were observed following an increase in the annealing temperature to 800°C. The diffusion-related redistribution of Ge atoms was observed only when the annealing temperatures were as high as 1000°C and was accompanied by formation of Ge nanocrystals. However, this did not give rise to intense PL as distinct from the case of Si-enriched SiO2 layers subjected to the same treatment. It is assumed that, prior to the onset of Ge diffusion, the formation of PL centers occurs via completion of direct bonds between the neighboring excess atoms, which gives rise to the dominant violet PL band (similar to the PL of O vacancies in SiO2) and a low-intensity long-wavelength emission from various Ge-containing complexes. The subsequent formation of centers of PL with λm~570 nm as a result of anneals at temperatures below 800°C is explained by agglomeration of bonded Ge atoms with formation of compact nanocrystalline precipitates. The absence of intense PL following the high-temperature anneals is believed to be caused by irregularities in the interfaces between the formed Ge nanoc-rystals and the SiO2 matrix.  相似文献   

8.
SiC/SiO_2镶嵌结构薄膜光致发光特性研究   总被引:2,自引:0,他引:2  
采用 SiC/SiO_2复合靶,用射频磁控共溅射技术和高温退火的方法制备了 SiC/SiO_2纳米镶嵌结构复合薄膜,并应用傅里叶红外吸收(FTIR),X 射线衍射(XRD),扫描电镜(SEM)和光致发光(PL)实验分析了薄膜的结构、表面形貌以及光致发光性能。结果表明,样品经高温退火后在 SiO_2基质中有 SiC 纳米颗粒形成。以 280 nm 波长光激发样品薄膜表面,显示出较强的 365 nm 的紫外光发射以及 458 nm 和 490 nm 处的蓝光发射,其发光强度随退火温度从 800℃升高至 1 050℃而增强。其发光归结为薄膜中与 Si-O 相关的缺陷形成的发光中心。  相似文献   

9.
nc-SiC/SiO_2镶嵌薄膜材料的制备、结构和发光特性   总被引:1,自引:0,他引:1  
采用二氧化硅/碳化硅复合靶,用射频磁控共溅射技术和后高温退火的方法在Si(111)衬底上制备了碳化硅纳米颗粒/二氧化硅基质(nc-SiC/SiO2)镶嵌结构薄膜材料。用X射线衍射(XRD),傅里叶红外吸收(FTIR),扫描电子显微镜(SEM)和光致发光(PL)实验分析了薄膜的微结构以及光致发光特性。实验结果表明,样品薄膜经高温退火后,部分无定形SiC发生晶化,形成β-SiC纳米颗粒而较均匀地镶嵌在SiO2基质中。以280nm波长光激发薄膜表面,有较强的365nm的紫外光发射以及458nm和490nm处的蓝光发射,其发光强度随退火温度的升高显著增强,发光归结为薄膜中与Si—O相关的缺陷形成的发光中心。  相似文献   

10.
Silicon pn diodes were fabricated by ion implantation of B and P ions with different doses and subsequent annealing processes. Room temperature photoluminescence (PL) were investigated and the factors affecting the PL intensity were analyzed. Results show that both kinds of pn diodes have PL peak centered at about 1140 nm. Dislocation loops resulted from ion implantation and annealing process may enhance the light emission of silicon pn diode due to its band quantum confinement effect to carriers. The luminescence intensity depends on the carrier concentrations in the implantation region. It should be controlled at the range of 1–6×1016 cm−3. Moreover, the PL intensities of pn diodes with furnace annealing (FA) are higher than those with rapid thermal annealing, and the annealing temperature range for FA is 900–1100 °C.  相似文献   

11.
王彩凤 《光电子.激光》2010,(12):1805-1808
用脉冲激光沉积法(PLD)在多孔硅(PS)衬底上生长ZnS薄膜,分别在300℃、400℃和500℃下真空退火。用X射线衍射(XRD)和扫描电子显微镜(SEM)研究了退火对ZnS薄膜的晶体结构和表面形貌的影响,并测量了ZnS/PS复合体系的光致发光(PL)谱和异质结的I-V特性曲线。研究表明,ZnS薄膜仅在28.5°附近存在着(111)方向的高度取向生长,由此判断薄膜是单晶立方结构的-βZnS。随着退火温度的升高,-βZnS的(111)衍射峰强度逐渐增大,且ZnS薄膜表面变得更加均匀致密,说明高温退火可以有效地促进晶粒的结合并改善结晶质量。ZnS/PS复合体系的PL谱中,随着退火温度升高,ZnS薄膜的自激活发光强度增大,而PS的发光强度减小,说明退火处理更有利于ZnS薄膜的发光。根据三基色叠加的原理,ZnS的蓝、绿光与PS的红光相叠加,ZnS/PS体系可以发射出较强的白光。但过高的退火温度会影响整个ZnS/PS体系的白光发射。ZnS/PS异质结的I-V特性曲线呈现出整流特性,且随着退火温度的升高其正向电流增加。  相似文献   

12.
ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient.The luminescence properties of the samples are investigated.In the same excitation condition,the photoluminescence(PL) spectra of all samples show an ultraviolet(UV) emission and a broad strong visible emission band.The asymmetric visible emis-sion band of annealed samples has a red-shift as the annealing temperature increasing from 200 ℃ to 600 ℃ and it can be deconvoluted into two subband emissions centered at 535 nm(green emission) and 611 nm(orange-red emission) by Gaussian-fitting analysis.Analyses of PL excitation(PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state,which can be attributed to the electron transition from Zn interstitial(Zni) to oxygen vacancy(Vo) and oxygen interstitial(Oi),respectively.  相似文献   

13.
ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique.White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.  相似文献   

14.
通过脉冲激光沉积(PLD)技术在多孔硅(PS)衬底上制备了ZnS薄膜。用光致发光(PL)的方法观察到白光发射,这个白光是由ZnS薄膜的蓝、绿光和PS的红光叠加形成的。白光光致发光谱是一个从450nm 到700nm的较强的可见光宽谱带。同时研究了激发波长、ZnS薄膜的生长温度、PS的孔隙率和退火温度对ZnS/PS光致发光谱的影响。  相似文献   

15.
CdS is one of the highly photosensitive candidate of II–VI group semiconductor material. Therefore CdS has variety of applications in optoelectronic devices. In this paper, we have fabricated CdS nanocrystalline thin film on ultrasonically cleaned glass substrates using the sol–gel spin coating method. The structural and surface morphologies of the CdS thin film were investigated by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) respectively. The surface morphology of thin films showed that the well covered substrate is without cracks, voids and hole. The round shape particle has been observed in SEM micrographs. The particles sizes of CdS nanocrystals from SEM were estimated to be~10–12 nm. Spectroscopic properties of thin films were investigated using the UV–vis spectroscopy, Photoluminescence and Raman spectroscopy. The optical band gap of the CdS thin film was estimated by UV–vis spectroscopy. The average transmittance of CdS thin film in the visible region of solar spectrum found to be~85%. Optical band gap of CdS thin film was calculated from transmittance spectrum ~2.71 eV which is higher than bulk CdS (2.40 eV) material. This confirms the blue shifting in band edge of CdS nanocrystalline thin films. PL spectrum of thin films showed that the fundamental band edge emission peak centred at 459 nm also recall as green band emission.  相似文献   

16.
Si0.6Ge0.4 nanocrystals, of diameter <5 nm, embedded in SiO2 in the form of single layers (2.1 × 1012 nanoparticles cm–2) and five-period multilayers (above 1013 nanoparticles cm–2) have been fabricated using a low-thermal-budget process consisting of deposition by low-pressure chemical vapor deposition and crystallization by rapid thermal annealing at several temperatures and for different times. The crystallization process was monitored by Raman spectroscopy and transmission electron microscopy. The loss of integrity and compositional changes of the nanoparticles during the annealing process were characterized by Rutherford backscattering spectrometry. During the annealing process, crystallization and Ge out-diffusion have been observed to compete with each other. Annealing of samples with nanoparticles of 4.6 nm diameter at low temperature (750°C) yields poor crystallization of the nanoparticles and causes the Ge to leave them by a pure diffusive mechanism, thus destroying their integrity. At higher temperatures (≥800°C), crystallization takes place in a short period of time (<30 s) and diffusion from the crystallized material is initially hindered. For samples with nanoparticles of 3.3 nm diameter, partial crystallization is detected at 800°C and 900°C and the crystalline quality is improved in both cases as the annealing time increases. Also, the detection capabilities of the Raman spectroscopy system for the detection of a certain density of SiGe nanocrystals of given diameter and composition have been explored and the lower limit estimated.  相似文献   

17.
CdS nanoneedles have been grown on Ni-coated Si (100) substrates by pulsed laser deposition. Substrate temperature and Ni-catalyst layer thickness were found to have great effects on the density and morphology of the as-grown CdS nanoneedles. Crystalline CdS nanoneedles with middle diameter and length of about 40?nm to 100?nm and 400?nm to 1000?nm, respectively, could be obtained at 350°C to 450°C on Ni-coated silicon (100) substrates, and nanoneedles with good shapes were obtained at 400°C substrate temperature. From the cross-section morphologies, it was found that the CdS nanoneedles grew out of the base CdS crystallite layer with thickness of about 500?nm. Based on the experimental results, vapor?Csolid and vapor?Cliquid?Csolid growth modes describe the CdS nanoneedle growth.  相似文献   

18.
采用磁控溅射和退火法在Si(111)衬底上制备Au/SiO2纳米复合薄膜,并在两种实验模式下进行退火处理。模式A:不同的退火温度,退火20min;模式B:退火温度1 000℃,不同的退火时间。用扫描电子显微镜(SEM)、X射线衍射方法(XRD)和光致发光(PL)等测试手段对退火后的Au/SiO2纳米复合薄膜的表面形貌、微观结构和发光特性进行了分析。SEM结果表明,在模式A情况下,随着温度的增加,Au纳米颗粒的大小先增加后减小,这与XRD测试结果相吻合。PL结果表明,在模式B情况下,随着退火时间的增加,发光峰强度先增加后减小。在325nm波长下激发,440nm的发光峰与Au颗粒的大小和数量有关,而523nm的发光峰与纳米复合膜的结构有关,这与SEM平面图相吻合。实验结果表明,Au/SiO2纳米复合薄膜的表面形貌、微观结构和发光特性与退火温度及退火时间有很强的依赖关系。  相似文献   

19.
CdS nanowires were self-assembled in a thin film (~200 nm) anodic aluminum oxide template on an indium tin oxide-coated glass substrate via dc electrodeposition. Raman spectral studies were done to probe the vibrational properties of scattering CdS phonons. Strong 1 longitudinal optical (LO), 2 LO, and 3 LO peaks were observed at 302 cm?1, 603 cm?1, and 906 cm?1 having an energy separation of 37 meV, which is in accordance with the CdS bulk values. The photoluminescence spectra showed improved intensity of emission on annealing of the CdS nanowires. Field-emission scanning microscopy confirms the growth of nanowires of diameters ranging from 10 nm to 25 nm for these templates. These diameters agreed with those extracted from the luminescence emission energies.  相似文献   

20.
The effect of annealing temperature on photoluminescence (PL) of ZnO–SiO2 nanocomposite was investigated. The ZnO–SiO2 nanocomposite was annealed at different temperatures from 600 °C to 1000 °C with a step of 100 °C. High Resolution Transmission Electron Microscope (HR-TEM) pictures showed ZnO nanoparticles of 5 nm are capped with amorphous SiO2 matrix. Field Emission Scanning Electron Microscope (FE-SEM) pictures showed that samples exhibit spherical morphology up to 800 °C and dumbbell morphology above 800 °C. The absorption spectrum of ZnO–SiO2 nanocomposite suffers a blue-shift from 369 nm to 365 nm with increase of temperature from 800 °C to 1000 °C. The PL spectrum of ZnO–SiO2 nanocomposite exhibited an UV emission positioned at 396 nm. The UV emission intensity increased as the temperature increased from 600 °C to 700 °C and then decreased for samples annealed at and above 800°C. The XRD results showed that formation of willemite phase starts at 800 °C and pure willemite phase formed at 1000 °C. The decrease of the intensity of 396 nm emission peak at 900 °C and 1000 °C is due to the collapse of the ZnO hexagonal structure. This is due to the dominant diffusion of Zn into SiO2 at these temperatures. At 1000 °C, an emission peak at 388 nm is observed in addition to UV emission of ZnO at 396 nm and is believed to be originated from the willemite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号