共查询到16条相似文献,搜索用时 78 毫秒
1.
链接预测的问题是复杂网络分析中的一个重要研究领域,已经在社会学、生物信息学、信息科学以及计算机科学等领域得到了广泛的应用。提出了一个顶点具有属性的网络链接预测的随机游走算法。在此算法中,根据顶点和属性的链接相似度定义了每一条边上的传播概率。并将顶点的属性相似度作为顶点间的相似度的初值,然后根据传输概率在网络中以随机游走的方式进行传播和更新,最终得到顶点间的相似度作为链接预测的结果得分。实验结果显示,提出的算法在顶点带属性的网络中取得了比其他算法更精确的预测结果。 相似文献
2.
3.
信息网络无处不在.通过把网络中的对象抽象为点,把对象之间的关系刻画为边,相应的信息网络就可以用图来表示.图中结点相似度计算是图数据管理中的基本问题,在很多领域都有运用,比如社会网络分析、信息检索和推荐系统等.其中,著名的相似度度量是以Personalized PageRank和SimRank为代表.这两种度量本质都是以图中的路径来定义,然而它们侧重的路径截然不同.为此,提出了一个度量 SuperSimRank.它不仅涵盖了这些路径,而且考虑了Personalized PageRank和SimRank两者都没有考虑的路径,从而能够更加体现出这种链接关系的本质.在此基础上对SuperSimRank进行了理论分析,从而提出了相应的优化算法,使得计算性能从最坏情况O(kn4)提高到O(knl).这里,k 是迭代次数,n 是结点数,l 是边数.最后,通过实验验证了 SuperSimRank 优于 SimRank 和 Personalized PageRank,同时验证了优化算法在各种情况下都是有效的. 相似文献
4.
链接预测旨在推荐网络中潜在的链接,是理解和研究社会网络特征的重要一步。随着社会网络的发展,许多网络中包含了大量的节点属性信息。研究集中在结合网络结构和节点属性信息来进行链接预测。网络中的两个节点既可能因为结构上相邻形成新链接,也可能因为属性相似产生联系,基于此假设提出了一种新的融合网络结构和节点属性的随机游走模型用于链接预测。首先建立了两个不同的网络图以及转移概率矩阵用于新的迭代规则,而后再简化该模型用于计算并提出了一种近似的快速算法。在两个标准数据集上进行的实验表明该方法较同类方法有明显的效果提升,同时进一步分析了随机游走粒子在两个网络图中游走的概率对预测结果的影响,分析结果显示节点属性可有效提高模型的预测能力。 相似文献
5.
《计算机应用与软件》2014,(7)
在微博中,链接预测可以用来进行用户的好友推荐。在好友推荐过程中,时间信息起着非常重要的作用,因为人们更愿意结交那些当前和自己兴趣爱好相同的用户。将用户之间最近的发言所共同关注的话题作为边的权值,设计一种基于随机游走的时间加权社会网络链接预测算法。实验结果表明,利用用户最近发言信息的链接预测的准确性优于过时的发言信息的链接预测,并且基于时间因素的好友推荐算法明显优于无时间的好友推荐算法。 相似文献
6.
《计算机应用与软件》2016,(8)
基于标签传播的社区发现算法因其时间效率高而得到广泛关注。针对该算法因标签传播的随机性导致其社区划分准确度难以保证的问题,提出一种基于随机游走的改进算法。首先,引入随机游走思想,计算得到一种衡量网络节点间相似度的矩阵;其次,在标签传播过程中,当邻居节点中标签出现频率存在多个最高时,不是随机选择一个,而是选择相似度最高的邻居节点所拥有的标签来更新,避免了标签在社区之间的任意传播;最后,用不同的真实网络进行测试,结果表明在社区发现中该算法比原始标签传播算法取得更好的表现。 相似文献
7.
实体链接是指将文本中具有歧义的实体指称项链接到知识库中相应实体的过程。该文首先对实体链接系统进行了分析,指出实体链接系统中的核心问题—实体指称项文本与候选实体之间的语义相似度计算。接着提出了一种基于图模型的维基概念相似度计算方法,并将该相似度计算方法应用在实体指称项文本与候选实体语义相似度的计算中。在此基础上,设计了一个基于排序学习算法框架的实体链接系统。实验结果表明,相比于传统的计算方法,新的相似度计算方法可以更加有效地捕捉实体指称项文本与候选实体间的语义相似度。同时,融入了多种特征的实体链接系统在性能上获得了达到state-of-art的水平。 相似文献
8.
9.
在属性网络中,与节点相关联的属性信息有助于提升网络嵌入各种任务的性能,但网络是一种图状结构,节点不仅包含属性信息还隐含着丰富的结构信息。为了充分融合结构信息,首先通过定义节点的影响力特性、空间关系特征;然后根据链接预测领域基于相似度的定义构建相似度矩阵,将节点二元组中的关联向量映射到相似度矩阵这一关系空间中,从而保留与节点相关的结构向量信息;再基于图的拉普拉斯矩阵融合属性信息和标签特征,将上述三类信息集成到一个最优化框架中;最后,通过二阶导数求局部最大值计算投影矩阵获取节点的特征表示进行网络嵌入。实验结果表明,提出的算法能够充分利用节点二元组的邻接结构信息,相比于其他基准网络嵌入算法,本模型在节点分类任务上取得了更好的结果。 相似文献
10.
目前,复杂网络的链接挖掘问题已得到了广泛研究,而加权网络的相关研究还较少且结果不甚理想。鉴于此,提出一种新的针对加权网络的链接预测方法,对以往方法中的加权相似性度量进行改造。新方法主要基于这一假定:链接xz为强关系而链接zy为弱关系时,链路〈x,z,y〉对节点x和 y之间形成链接的贡献最低。因此,新方法中链接xz为强关系而链接zy为弱关系时,链路〈x,z,y〉对节点x和节点y之间的相似性得分S(x,y)的贡献度的削弱程度最大。在带权网络数据集USAir和NetScience上的比较实验表明,新方法在AUC指标上具有一定的优势。 相似文献
11.
链接预测是确定用户间关系的基本工具。通过相似性度量进行链路预测是一种常见的方法,提出一种基于相似度的链路预测算法,根据网络结构及拓扑特性来确定相似度,引入优化链路预测度量方法,将聚类系数作为网络结构性质。此外,并考虑共享邻域,得到较其他同类链路预测方法更好的性能。实验结果表明,提出的算法性能优于经典算法。结合在Facebook、Twitter与新浪微博等社交网络环境中的实验结果可知,SLP-CNP法较其他算法具有更优精度与效率。在未来的工作中,还可尝试在所提方法的基础上,提升在加权网络、有向网络和二部网络中的适用性。 相似文献
12.
近年来,复杂网络中的链路预测问题受到越来越多的关注,链路预测的应用场景也越来越广泛,因此如何提高链路预测精度是一个重要问题。目前已提出了很多方法,其中加权相似性指标的预测方法取得了很好的效果。然而传统的加权网络链路预测方法仅考虑了链接的自然权重,忽略了链接的拓扑权重对预测精度的影响。因此,针对加权网络的链路预测,综合考虑网络中边的聚类和扩散特性并将其作为边的拓扑权重,提出了基于链接拓扑权重的WCD含权预测指标,包括WCD-CN,WCD-AA,WCD-RA和WCD-LP4个相似性指标。文中以Matlab为实验平台,在两个带权数据集(USAir,Bibble)和两个无权数据集(Pblogs,Dolphins)上进行实验,并以AUC作为评价指标。仿真结果表明,与基于自然权重的含权指标、基于簇系数的结构含权指标相比,所提算法具有更好的预测精度。 相似文献
13.
14.
在社会媒体中,用户的状态信息实时地更新,用户之间的链接结构也不断改变,这给网络的链接预测提出了严峻的挑战。传统的链接预测方法针对某一特定情景,在非预定情景中效果往往表现不佳。针对单一网路连接预测算法的不足,提出一种基于Skyline查询的社会网络链接预测方法。该算法综合运用多种网络链接预测算法,将其预测值作为被预测链接的属性向量,并将Skyline点作为链接预测的结果返回给用户。实验表明,基于Skyline查询的链接预测方法其准确性明显高于相关链接预测研究的准确性,可应用于实际的社会媒体链接预测和推荐。 相似文献
15.
16.
随着以微博为代表的在线社交网站的发展,微博用户之间形成了复杂的社会网络。针对微博社会网络,研究了影响微博用户之间关系形成的各种因素,提出了基于链路预测的微博用户关系分析模型。首先分析了网络结构特征在微博社会网络中的作用,同时针对微博社会网络的特点,引入微博属性特征,构造基于随机森林的链路预测模型,并将模型应用于新浪微博用户数据集,进行微博用户关系的训练预测,通过比较引入微博属性特征前后的预测性能以及特征的重要性分布,分析了各类特征对微博用户关系形成的影响,揭示了除传统的网络结构特征外,微博属性特征对微博用户关系的形成具有重要的影响力。 相似文献