共查询到20条相似文献,搜索用时 31 毫秒
1.
针对当前数据中心服务器能耗优化和虚拟机迁移时机合理性问题,提出一种基于动态调整阈值(DAT)的虚拟机迁移算法。该算法首先通过统计分析物理机历史负载数据动态地调整虚拟机迁移的阈值门限,然后通过延时触发和预测物理机的负载趋势确定虚拟机迁移时机。最后将该算法应用到实验室搭建的数据中心平台上进行实验验证,结果表明基于DAT的虚拟机迁移算法比静态阈值法关闭的物理机数量更多,云数据中心能耗更低。基于DAT的虚拟机迁移算法能根据物理机的负载变化动态迁移虚拟机,达到提高物理机资源利用率、降低数据中心能耗、提高虚拟机迁移效率的目的。 相似文献
2.
针对点值预测方法预测虚拟机故障,未充分利用虚拟机历史周期特征和上下文信息、预测准确率不高的问题,提出了一种动态滑动窗口多通道Bi-LSTM的虚拟机故障预测模型。该模型首先利用动态滑动窗口动态捕获虚拟机故障发生过程的上下文特征;然后构建多通道机制的Bi-LSTM以同时学习不同指标类之间的相关性特征,预测虚拟机下一周期的故障;最后根据OCSVM和区间偏移度方法对预测结果进行判断,得出具体的故障类型。实验表明,该模型在预测准确率、召回率、F值三个指标上均优于基线模型,验证了模型对虚拟机故障预测的有效性。 相似文献
3.
基于数据流的滑动窗口机制的研究 总被引:2,自引:1,他引:2
传统的关系数据库是在持久稳定的数据集合上进行数据查询,而数据流的长度是无界的,不可能将所有的数据存储下来,因此对数据流的查询处理大多采用了持续查询。对数据流进行持续查询时,往往感兴趣的不是所有的数据而是最近到达的部分数据,这样就引入滑动窗口模型。定义滑动窗口语义是数据流管理系统中一个非常基础性的工作,直接关系到数据流的存储和查询的执行效率。针对滑动窗口的模型和语义进行了研究。 相似文献
4.
低能量消耗与物理资源的充分利用是绿色云数据中心构造的两个主要目标,需要采用虚拟机迁移模型来完成优化,为此提出了融合虚拟机选择和放置的虚拟机迁移模型INTER-VMM(Interrelation approach in virtual machine migration)。INTER-VMM设计了云数据中心的基于多维物理资源约束的能量消耗模型,是一种将主机负载检测、虚拟机选择及放置结合起来考虑的虚拟机迁移策略。在虚拟机选择中采用HPS(High CPU utilization selection)选择法,选择超负载物理主机上CPU利用率最高的一个虚拟机,让其进入候选迁移虚拟机列表中。在虚拟机放置中采用空间感知分配(Space aware placement, SAP)放置法,考虑了充分利用物理主机空余空间使用效率的方法。仿真结果表明,INTER-VMM比近几年来常见的虚拟机迁移策略具有更好的性能指标,对云服务提供商具有很好的参考价值。 相似文献
5.
虚拟机迁移是当前云计算资源调度的重要研究方向之一。目前,用户规模的不断增长带来了一些新的挑战,传统迁移策略很难适应动态变化的内外部环境。对此,设计了自适应虚拟机迁移的总体框架,通过对虚拟机迁移建模,提出了"迁移路径"和"服务开销"等概念,并以服务器的CPU利用率和服务器间的带宽利用率为指标,为系统中所有迁移的虚拟机规划最优的迁移路径,以使系统总的服务开销最小化。首先,设计了基于阈值的虚拟机筛选算法来挑选可迁移的虚拟机;接着,设计了基于自回归积分滑动平均模型的时间序列预测算法,用以预测服务器未来时间窗口内的服务开销;然后,利用动态规划基于服务器服务开销的预测值设计了迁移路径计算算法,为每个待迁移虚拟机规划出最优的迁移方案;最后,利用迁移路径下服务器服务开销的预测值与真实值之间的差距所反映出的预测窗口性能的优劣,设计并实现了一个预测窗口自适应调整算法。实验表明,该自适应虚拟机迁移算法在自适应性调整和最小化服务开销等方面具有良好的效果。 相似文献
6.
提出基于粒子群优化的虚拟机迁移模型(Particle swarm optimization for virtual machine migration model,PSO-VMM)。设计基于多维物理资源约束的能量消耗模型,以能量消耗最小作为粒子群优化的目标函数。在物理主机状态检测和虚拟机选择阶段,利用鲁棒局部归约检测LRR(Local Regression Robust)和最小迁移时间选择MMT(Minimum Migration Time)。在虚拟机放置阶段,将粒子群优化算法应用到大规模的候选迁移虚拟机到物理主机的重新分配。仿真实验结果表明:PSO-VMM迁移策略使得云平台的各类性能指标都得到改善。 相似文献
7.
虚拟化的数据中心主要采用预拷贝(Pre-copy)算法进行虚拟机实时迁移.当虚拟机中运行负载较高或者网络传输带宽较低时,预拷贝算法固定的停机阈值严重影响实时迁移的性能.针对这个问题,提出一种自适应停机阈值机制,根据之前各拷贝轮中脏页率构成的时间序列,首先利用动态指数平滑法来预测后轮的脏页率,在预测脏页率超过网络传输带宽的情况下,再采用Mann-Kendall检验模型对脏页率变化趋势进行判断,根据判断结果确定停机切换的时机.实验结果证明,采用基于自适应阈值机制的预拷贝算法能在高负载低延迟场景下有效提高实时迁移性能. 相似文献
8.
9.
10.
基于滑动窗口的动态摘要算法 总被引:2,自引:0,他引:2
动态摘要是根据查询检索词从文章中动态提取的摘要。用户仅仅浏览动态摘要之后就能了解文章中与查询相关的部分,进而判断是否值得详细阅读整篇文章。该文根据搜索引擎对摘要速度和质量的要求,提出了一种使用滑动窗口抽取片断的算法,接着构造了摘要评测模型,使用同一个测试集对新动态摘要算法和Google、百度作对比实验。结果证明使用新方法生成的摘要能够言简意赅地概括文章的相关内容,在摘要指标的分项测试中取得了和Google基本相同的效果,但明显要比百度好,综合评价分别提高了5%和11%。 相似文献
11.
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selection)和虚拟机放置(VM placement)操作.DDBS在虚拟机选择过程中考虑虚拟机之间的数据依... 相似文献
12.
Manish Verma G. R. Gangadharan Nanjangud C. Narendra Ravi Vadlamani Vidyadhar Inamdar Lakshmi Ramachandran Rodrigo N. Calheiros Rajkumar Buyya 《Concurrency and Computation》2016,28(17):4429-4442
Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and resource allocation methodology that can provision resources in advance, thereby minimizing the virtual machine downtime required for resource provisioning. In this paper, we present a dynamic resource demand prediction and allocation framework in multi‐tenant service clouds. The novel contribution of our proposed framework is that it classifies the service tenants as per whether their resource requirements would increase or not; based on this classification, our framework prioritizes prediction for those service tenants in which resource demand would increase, thereby minimizing the time needed for prediction. Furthermore, our approach adds the service tenants to matched virtual machines and allocates the virtual machines to physical host machines using a best‐fit heuristic approach. Performance results demonstrate how our best‐fit heuristic approach could efficiently allocate virtual machines to hosts so that the hosts are utilized to their fullest capacity. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Karl F. Doerner Manfred Gronalt Richard F. Hartl Guenter Kiechle Marc Reimann 《Computers & Operations Research》2008
In this paper a model and several solution procedures for a novel type of vehicle routing problems where time windows for the pickup of perishable goods depend on the dispatching policy used in the solution process are presented. This problem is referred to as Vehicle Routing Problem with multiple interdependent time windows (VRPmiTW) and is motivated by a project carried out with the Austrian Red Cross blood program to assist their logistics department. Several variants of a heuristic constructive procedure as well as a branch-and-bound based algorithm for this problem were developed and implemented. Besides finding the expected reduction in costs when compared with the current procedures of the Austrian Red Cross, the results show that the heuristic algorithms find solutions reasonably close to the optimum in fractions of a second. Another important finding is that increasing the number of pickups at selected customers beyond the theoretical minimum number of pickups yields significantly greater potential for cost reductions. 相似文献
14.
基于MapReduce虚拟集群的能耗优化算法 总被引:1,自引:0,他引:1
随着全球能源危机的出现,许多研究者开始关注数据中心的能耗问题。在满足用户需求的前提下,减少数据中心的活跃节点个数能够有效地降低其能耗。传统的减少活跃节点的方式是虚拟机迁移,但虚拟机迁移会造成极大的系统开销。提出一种基于MapReduce虚拟集群的能耗优化算法--在线时间平衡算法OTBA,能够减少活跃物理节点数,有效降低数据中心的能耗,并且避免了虚拟机的迁移。通过建立云数据中心的能耗模型、用户提交服务的排队模型和评价作业完成质量的作业运行模型,确定了数据中心节能模型的目标函数和变量因子。在线时间平衡算法是基于虚拟云环境和在线MapReduce作业的一种节能调度算法,能够在虚拟机的生命周期和资源利用率之间做出权衡,使数据中心激活的服务器达到最少,能耗降到最低。此外,该结果通过仿真和Hadoop平台上的实验得到了验证。 相似文献
15.
随着越来越多数据中心的构建和部署,能耗问题成为研究热点。作为一种有效的节能策略,虚拟机整合受到了研究人员和业界的关注。针对传统的虚拟机放置策略的不足,利用化学反应优化算法CRO求解数据中心的虚拟机放置问题,并通过禁忌搜索算法提高CRO算法中器壁无损碰撞对解的勘探能力。仿真实验表明,相对于传统的贪婪放置策略FFD和基于ACO的放置策略,提出的CROTS算法可有效降低数据中心物理机的使用个数,进而降低了数据中心的能耗。 相似文献
16.
17.
《Concurrency and Computation》2017,29(10)
One of the key problems for Infrastructure‐as‐a‐Service providers is finding the optimal allocation of virtual machines on the physical machines available in the provider's data center. Since the allocation has significant impact on operational costs as well as on the performance of the accommodated applications, several algorithms have been proposed for the virtual machine placement problem. So far, no objective comparison of the proposed algorithms has been provided; therefore, it is not known which one works best or what factors influence the performance of the algorithms. In this paper, we present an environment and methodology for such comparisons and compare 7 different algorithms using the proposed environment and methodology. Our results showcase differences of up to 66% between the effectiveness of different algorithms on the same real‐world workload traces, thus underlining the importance of objectively comparing the performance of competing algorithms. 相似文献
18.
针对数据中心在虚拟机动态部署过程中的高能耗问题,提出了面向数据中心的两阶段虚拟机能效优化部署算法--DVMP_VMMA。第一阶段为初始部署,提出了动态虚拟机部署(DVMP)算法限定主机最优部署数量,降低了闲置能耗;同时,为了应对负载的动态变化,第二阶段提出迁移约束的虚拟机迁移算法(VMMA)对初始部署方案作进一步优化,这样不仅得到的系统能耗更低,而且还能保证应用服务质量。与满载算法(FL)、基于固定门限值的部署算法(FT),绝对中位差部署算法(MAD)、四分位差部署算法(QD)、迁移周期最优算法(MTM)、最小占用率迁移算法(MIU)进行的比较实验结果表明:DVMP_VMMA不仅考虑了系统能耗优化,使运行时资源利用率更高;而且还可以避免VM频繁迁移完成对性能的提升,其在优化数据中心能耗、SLA违例、VM迁移量的控制及性能损失等指标上均有较好效果,其综合性能优于对比算法。 相似文献
19.
In dynamic datacenter networks (DDNs), there are two ways to handle growing traffic: adjusting the network topology according to the traffic and placing virtual machines (VMs) to change the workload according to the topology. While previous work only focused on one of these two approaches, in this paper, we jointly optimize both virtual machine placement and topology design to achieve higher traffic scalability. We formulate this joint optimization problem to be a mixed integer linear programming (MILP) model and design an efficient heuristic based on Lagrange’s relaxation decomposition. To handle traffic dynamics, we introduce an online algorithm that can balance algorithm performance and overhead. Our extensive simulation with various network settings and traffic patterns shows that compared with randomly placing VMs in fixed datacenter networks, our algorithm can reduce up to 58.78% of the traffic in the network, and completely avoid traffic overflow in most cases. Furthermore, our online algorithm greatly reduces network cost without sacrificing too much network stability. 相似文献
20.
Cloud computing provides different constructive services in order to share huge scale information, computing resources, storage resources, and offer research knowledge. Cloud Service Providers (CSPs) afforded its services to cloud customers, usually in structure of Virtual Machines (VMs). In this paper, Fractional Artificial Bee Chicken Swarm Optimization (Fractional ABCSO) is introduced for VM placement in the cloud. The Fractional ABCSO is obtained by integrating the Fractional concept (FC), Chicken Swarm Optimization (CSO), and Artificial Bee Colony (ABC). Here, the cloud simulation is performed by means of VM and physical machine (PM). At first, VM placement is carried out using different system factors, such as Central Processing Unit (CPU), Million Instructions per Second (MIPS), bandwidth, migration cost, memory, frequency, power, along with Quality of Service (QoS). The developed Fractional ABCSO algorithm outperformed other existing techniques with regard to load, migration cost, and power consumption of 0.1614, 0.0535, and 0.0408. 相似文献