首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

2.
The aim of the present work is to study the catalytic efficiency of amorphous Co–Ni–P–B catalyst powders in hydrogen generation by hydrolysis of alkaline sodium borohydride (NaBH4). These catalyst powders have been synthesized by chemical reduction of cobalt and nickel salt at room temperature. The Co–Ni–P–B amorphous powder showed the highest hydrogen generation rate as compared to Co–B, Co–Ni–B, and Co–P–B catalyst powders. To understand the enhanced efficiency, the role of each chemical element in Co–Ni–P–B catalyst has been investigated by varying the B/P and Co/Ni molar ratio in the analyzed powders. The highest activity of the Co–Ni–P–B powder catalyst is mostly attributed to synergic effects caused by each chemical element in the catalyst when mixed in well defined proportion (molar ratio of B/P = 2.5 and of Co/(Co + Ni) = 0.85). Heat-treatment at 573 K in Ar atmosphere causes a decrease in hydrogen generation rate that we attributed to partial Co crystallization in the Co–Ni–P–B powder. The synergic effects previously observed with Co–Ni–B and Co–P–B, now act in a combined form in Co–Ni–P–B catalyst powder to lower the activation energy (29 kJ mol−1) for hydrolysis of NaBH4.  相似文献   

3.
A mesoporous Ni–Al2O3–ZrO2 aerogel (Ni–AZ) catalyst was prepared by a single-step epoxide-driven sol–gel method and a subsequent supercritical CO2 drying method. For comparison, a mesoporous Al2O3–ZrO2 aerogel (AZ) support was prepared by a single-step epoxide-driven sol–gel method, and subsequently, a mesoporous Ni/Al2O3–ZrO2 aerogel (Ni/AZ) catalyst was prepared by an incipient wetness impregnation method. The effect of preparation method on the physicochemical properties and catalytic activities of Ni–AZ and Ni/AZ catalysts was investigated. Although both catalysts retained a mesoporous structure, Ni/AZ catalyst showed lower surface area than Ni–AZ catalyst. From TPR, XRD, and H2–TPD results, it was revealed that Ni–AZ catalyst retained higher reducibility and higher nickel dispersion than Ni/AZ catalyst. In the hydrogen production by steam reforming of ethanol, both catalysts showed a stable catalytic performance with complete conversion of ethanol. However, Ni–AZ catalyst showed higher hydrogen yield than Ni/AZ catalyst. Superior textural properties, high reducibility, and high nickel surface area of Ni–AZ catalyst were responsible for its enhanced catalytic performance in the steam reforming of ethanol.  相似文献   

4.
Ni–Ce0.8Zr0.2O2 and Ni–MgO–Ce0.8Zr0.2O2 catalysts were investigated for H2 production from CO2 reforming of CH4 reaction at a very high gas hourly space velocity of 480,000 h−1. Ni–MgO–Ce0.8Zr0.2O2 exhibited higher catalytic activity and stability (CH4 conversion >95% at 800 °C for 200 h). The outstanding catalytic performance is mainly due to the basic nature of MgO and an intimate interaction between Ni and MgO.  相似文献   

5.
La0.8Sr0.2Ni0.8M0.2O3 (LSNMO) (where M = Bi, Co, Cr, Cu and Fe) perovskite catalyst precursors have been successfully developed for CO2 dry-reforming of methane (DRM). Among all the catalysts, Cu-substituted Ni catalyst precursor showed the highest initial catalytic activity due to the highest amount of accessible Ni and the presence of mobile lattice oxygen species which can activate C–H bond, resulting in a significant improvement of catalytic activity even at the initial stage of reaction. However, these Ni particles can agglomerate to form bigger Ni particle size, thereby causing lower catalytic stability. As compared to Cu-substituted Ni catalyst, Fe-substituted Ni catalyst has low initial activity due to the lower reducibility of Ni–Fe and the less mobility of lattice oxygen species. However, Fe-substituted Ni catalyst showed the highest catalytic stability due to: (1) strong metal–support interaction which hinders thermal agglomeration of the Ni particles; and (2) the presence of the abundant lattice oxygen species which are not very active for C–H bond activation but active to react with CO2 to form La2O2CO3, hence minimizing carbon formation by reacting with surface carbon to form CO.  相似文献   

6.
The process of production of highly concentrated COx-free hydrogen and nanofibrous carbon (NFC) by catalytic propane decomposition on Ni and Ni–Cu catalysts (different in active phase composition) at relatively low temperatures (400–700 °C) was investigated. The bimetallic Ni–Cu catalysts showed significantly higher propane conversion and longer lifetime than monometallic Ni catalyst. The Ni (50 wt.%)–Cu (40 wt.%)/SiO2 catalyst exhibited the best activity and selectivity at 600 °C. Total hydrogen yield of 60.8 mol H2/gcat (during 24 h time on stream) and the total H2:CH4 ratio of 8.4 were obtained during propane decomposition under these optimal conditions. The possible reaction scheme of propane decomposition over Ni-based catalysts and the reasons of increasing the selectivity of hydrogen are discussed.  相似文献   

7.
The effect of preparation method on MgO-promoted Ni–Ce0.8Zr0.2O2 catalysts was investigated in CO2 reforming of CH4. Co-precipitated Ni–MgO–Ce0.8Zr0.2O2 exhibited very high activity as well as stability (XCH4 > 95% at 800 °C for 200 h) due to high surface area, high dispersion of Ni, small Ni crystallite size, and easier reducibility. Four elements (Ni, Mg, Ce, and Zr) are located at the same position for the co-precipitated catalyst, resulting in easier reducibility.  相似文献   

8.
A series of Y2O3-promoted NiO/SBA-15 (9 wt% Ni) catalysts (Ni:Y weight ratio = 9:0, 3:1, 3:2, 1:1) were prepared using a sol–gel method. The fresh as well as the catalysts used in CO2 reforming of methane were characterized using N2-physisorption, XRD, FT-IR, XPS, UV, HRTEM, H2-TPR, O2-TPD and TG techniques. The results indicate that upon Y2O3 promotion, the Ni nanoparticles are highly dispersed on the mesoporous walls of SBA-15 via strong interaction between metal ions and the HO–Si-groups of SBA-15. The catalytic performance of the catalysts were evaluated at 700 °C during CH4/CO2 reforming at a gas hourly space velocity of 24 L gcat−1 h−1(at 25 °C and 1 atm) and CH4/CO2molar ratio of 1. The presence of Y2O3 in NiO/SBA-15 results in enhancement of initial catalytic activity. It was observed that the 9 wt% Y–NiO/SBA-15 catalyst performs the best, exhibiting excellent catalytic activity, superior stability and low carbon deposition in a time on stream of 50 h.  相似文献   

9.
The stability of Mn-promoted Ni/SiO2 catalyst for methane CO2 reforming was investigated comparatively to that of Zr-promoted Ni/SiO2. The catalysts were prepared by the same impregnation method with the same controlled promoter contents and characterized by TPR, XRD, TG, SEM, XPS and Raman techniques. The addition of Mn to Ni/SiO2 catalyst promoted the dispersion of Ni species, leading to smaller particle size of NiO on the fresh Ni–Mn/SiO2 catalyst and the formation of NiMn2O4, which enhanced the interaction of the modified support with Ni species. Thus, the Ni–Mn/SiO2 catalyst showed higher activity and better ability of restraining carbon deposition than Ni/SiO2 catalyst. Besides, it exhibited stable activity at reaction temperatures over the range from 600 °C to 800 °C. However, the introduction of Zr increased the reducibility of Ni–Zr/SiO2, and the catalyst deactivated much more dramatically when the reaction temperature decreased due to its poor ability of restraining carbon deposition, and its activity decreased monotonically with time on stream at 800 °C.  相似文献   

10.
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively.  相似文献   

11.
A Ni–nano-CaO sorption complex catalyst was modified with ZrO2 to improve its stability for use in hydrogen production from steam methane reforming (SMR). Nano-ZrO2 was introduced into a support containing nano-CaCO3 and Al2O3. The sorption complex catalyst, ZrO2–Ni–nano-CaO, was prepared by infusing Ni into the ZrO2–nano-CaO support, followed by calcination. The catalyst was evaluated with a bench-scale fixed bed reactor under the following reaction conditions: a temperature of 600 °C, a steam–carbon mole ratio of 4:1, a gas hourly space velocity of 1800 h−1, and a regeneration temperature of 800 °C. The reaction was performed under an atmosphere of nitrogen. The ZrO2-modified sorption complex catalyst could achieve 20 cyclic runs of ReSER hydrogen production, while the sorption complex catalyst without the ZrO2 modification rapidly deactivated after three cyclic runs. Brunauer–Emmer–Teller analysis showed that the catalyst surface area of the new catalyst had increased. Furthermore, the addition of ZrO2 could prevent the formation of NiAl2O4 in the sorption complex catalyst, which we believe to be the main cause of the improvement in the catalyst stability.  相似文献   

12.
The dry and oxidative dry reforming of CH4 over alumina-supported Co–Ni catalysts were investigated over 72-h longevity experiments. The deactivation behaviour at low CO2:CH4 ratio (≤2) suggests that carbon deposition proceeds via a rapid dehydropolymerisation step resulting in the blockage of active sites and loss in CO2 consumption. In particular, at high temperatures of 923 K and 973 K, a ‘breakthrough’ point was observed in which deactivation that was previously slow suddenly accelerated, indicating rapid polymerisation of deposited carbon. Only with feed CO2:CH4 > 2 or with O2 co-feeding was coke-induced deactivation eliminated. In particular, O2 co-feeding gave improved carbon removal, product H2:CO ratios more suitable for downstream GTL processing and stable catalytic performance. Conversion-time data were adequately fitted to the generalised Levenspiel reaction-deactivation model. Activation energy estimate (66–129 kJ mol−1) was dependent on the CO2:CH4 ratio but representative of other hydrocarbon reforming reactions on Ni-based catalysts.  相似文献   

13.
In this work the effects of different promoters (Cr, Al, Mn, Ce, Ni, Co and Cu) on the structural and catalytic properties of Nanocrystalline iron based catalysts for high temperature water gas shift reaction were investigated. The catalysts were prepared in active phase (Fe3O4) via a facile direct synthesis routs without any additive and characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR), transmission and scanning electron microscopies (TEM,SEM) techniques. The obtained results indicated that synergic effect of Mn and Ni promoters can lead to obtain a Cr-free catalyst with high activity. In addition, the effect of Ni content on the structural and catalytic properties of the Fe–Mn–Ni catalysts was investigated. It was found that Fe–Mn–Ni catalyst with Fe/Mn = 10 and Fe/Ni = 5 weight ratios showed the highest catalytic activity among the prepared catalysts and possessed a stable catalytic performance without any decrease during 10 h time on stream. Moreover, the effect of GHSV and steam/gas ratio on the catalytic performance of this catalyst was investigated.  相似文献   

14.
The catalytic decomposition of methane into hydrogen and carbon was studied on La2O3 doped Ni and Ni–Cu Raney-type catalysts. The activity and stability of the catalysts were assessed by comparing the experimental conversions with the calculated equilibrium conversions for each set of experimental conditions, and the maximum conversions with the conversions at the end of (at least) 5 h tests, respectively. Improved stability of La2O3 doped catalysts was ascribed to an electronic promotion effect. There is an optimum load of the promoter, which provides for extended periods of stable catalyst operation. The carbon deposits consist of carbon nanofibers and multiwall carbon nanotubes. The La2O3 doped Ni–Cu Raney-type catalysts presented in this work are remarkably efficient for the production of hydrogen by methane decomposition.  相似文献   

15.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

16.
This work investigates the catalytic performance of nanocomposite Ni/ZrO2-AN catalyst consisting of comparably sized Ni (10–15 nm) and ZrO2 (15–25 nm) particles for hydrogen production from the cyclic stepwise methane reforming reaction with either steam (H2O) or CO2 at 500–650 °C, in comparison with a conventional Ni/ZrO2-CP catalyst featuring Ni particles supported by large and widely sized ZrO2 particles (20–400 nm). Though both catalysts exhibited similar activity and stability during the reactions at 500 and 550 °C, they showed remarkably different catalytic stabilities at higher temperatures. The Ni/ZrO2-CP catalyst featured a significant deactivation even during the methane decomposition step in the first cycle of the reactions at ≥600 °C, but the Ni/ZrO2-AN catalyst showed a very stable activity during at least 17 consecutive cycles in the cyclic reaction with steam. Changes in the catalyst beds at varying stages of the reactions were characterized with TEM, XRD and TPO–DTG and were correlated with the amount and nature of the carbon deposits. The Ni particles in Ni/ZrO2-AN became stabilized at the sizes of around 20 nm but those in Ni/ZrO2-CP kept on growing in the methane decomposition steps of the cyclic reaction. The small and narrowly sized Ni particles in the nanocomposite Ni/ZrO2-AN catalyst led to a selective formation of filamentous carbons whereas the larger Ni particles in the Ni/ZrO2-CP catalyst a preferred formation of graphitic encapsulating carbons. The filamentous carbons were favorably volatilized in the steam treatment step but the CO2 treatment selectively volatilized the encapsulating carbons. These results identify that the nature but not the amount of carbon deposits is the key to the stability of Ni/ZrO2 catalyst and that the nanocomposite Ni/ZrO2-AN would be a promising catalyst for hydrogen production via cyclic stepwise methane reforming reactions.  相似文献   

17.
A process to produce hydrogen from polyethylene [–CH2–]n (PE) is developed by milling with Ca(OH)2 and Ni(OH)2 followed by heating the milled product. Characterizations by a set of analytical methods of X-ray diffraction (XRD), infrared spectroscopy (FT-IR), thermogravimetry–mass spectroscopy (TG/MS) and gas chromatography (GC) were performed on the milled and heated samples to monitor the process. It has been observed that addition of nickel hydroxide as well as increases in milling time and rotational speed of the mill is beneficial to the gas generation, mainly composed of H2 and CH4, CO, CO2. Gaseous compositions from the milled samples vary depending on the added molar ratio of calcium hydroxide. H2 emission occurs between 400 and 500 °C, and H2 concentration of 95% is obtained from the mixture of PE/Ca(OH)2/Ni(OH)2 (C:Ca:Ni = 6:14:1) sample, and the concentrations of CO and CO2 remain below 0.5%. The process offers a novel approach to treat waste plastic by transforming it into hydrogen.  相似文献   

18.
This paper presents the preparation of highly stable nano-porous Ni–Cu catalysts for simultaneous production of COx–free hydrogen and carbon nano-fibers. The main features of this work focuses on the optimization, methods of catalyst preparation and application of an experimental model for deactivation. The fresh catalysts and the deposited carbon were characterized by SEM, TEM, XRD and Raman spectroscopy. Whatever to be the preparation methods, performance tests showed that the presence of Cu as promoter in Ni–Cu–MgO catalysts, enhanced the catalytic activity, substantially at higher temperatures with the best result obtained for Ni–Cu–MgO catalyst prepared by one step sol- gel method, reaching a hydrogen concentration of 70 vol% (160.51 mol H2/mol Ni-1 h) and a smaller value of ID/IG (less imperfection) for produced carbon nano-fibers at 670 °C. Detailed rate-based model for deactivation of catalyst was found to be dependent on the time, reaction temperature and partial pressure of methane and indicated that the reaction of deactivation could be modeled by a simple hyperbolic model.  相似文献   

19.
Ni/Al2O3 nanocatalysts doped with Co and Cu were prepared by co-impregnation and modified by non-thermal plasma. The nanocatalysts were characterized by XRD, FESEM, TEM, EDX dot-mapping, BET, FTIR, TGA-DTG, and XPS analysis. According to XRD and XPS results, good interaction between active phase and support can be observed in both Ni–Co/Al2O3 and Ni–Cu/Al2O3 nanocatalysts. A uniform morphology, high surface area, and well dispersed particles of active sites in Ni–Co/Al2O3 nanocatalyst were observed that shows the effect of cobalt in controlling Ni ensemble size. In contrast Ni–Cu/Al2O3 nanocatalyst had no homogenous dispersion of active phase due to sintering of copper particles. The activity measurements illustrated better Ni–Co/Al2O3 nanocatalyst activity in comparison to Ni/Al2O3 and Ni–Cu/Al2O3 in terms of CH4 and CO2 conversion. H2 and CO yield were higher for Ni–Co/Al2O3 and higher H2/Co ratio was obtained as well. Whereas Ni/Al2O3 and Ni–Co/Al2O3 did not experience deactivation, Ni–Cu/Al2O3 suffered from activity loss by ca. 22% and 16% for CH4 and CO2 conversion, respectively. Sintering most likely happened in Ni–Cu/Al2O3 nanocatalyst due to high temperature of calcination while cobalt by controlling the size of Ni particles, alternated the size of active sites to a size range in which carbon formation was suppressed. Ni/Al ratio from XPS analysis which signifies Ni dispersion on alumina support was 5.15, 9.16, and 6.35 for Ni/Al2O3, Ni–Co/Al2O3, and Ni–Cu/Al2O3 nanocatalysts respectively. The highest ratio of Ni/Al was for Ni–Co/Al2O3 nanocatalyst that shows the best coverage of support by Ni active phase in this nanocatalyst.  相似文献   

20.
Active and stable Ni–Fe–SiO2 catalysts prepared by sol–gel method were employed for direct decomposition of undiluted methane to produce hydrogen and carbon filaments at 823 K and 923 K. The results indicated that the lifetime of Ni–Fe–SiO2 catalysts was much longer than Ni–SiO2 catalyst at a higher reaction temperature such as 923 K, however, a reverse trend was shown when methane decomposition took place at a lower reaction temperature such as 823 K. XRD studies suggested that iron atoms had entered into the Ni lattice and Ni–Fe alloy was formed in Ni–Fe–SiO2 catalysts. The structure of the carbon filaments generated over Ni–SiO2 and Ni–Fe–SiO2 was quite different. TEM studies showed that “multi-walled” carbon filaments were formed over 75%Ni–25%SiO2 catalyst, while “bamboo-shaped” carbon filaments generated over 35%Ni–40%Fe–25%SiO2 catalysts at 923 K. Raman spectra of the generated carbons demonstrated that the graphitic order of the “multi-walled” carbon filaments was lower than that of the “bamboo-shaped” carbon filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号