首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An invasive Eurasian fish, the round goby Neogobius melanostomus, has recently spread from the Great Lakes into the St. Lawrence River. We quantified prey preferences of this benthivore and determined whether its predatory impacts on molluscs in the river are similar to those in the Great Lakes. We measured the size structure of gastropods and dreissenid mussels at 13 St. Lawrence River sites where round goby densities ranged from 0 to 6 m− 2. For four of these sites, data were available for multiple years before and after invasion. Contrary to studies in the Great Lakes, there were no consistent effects of round goby density on the size structure of dreissenids, although there was an ontogenetic diet shift toward dreissenids. However, the abundance and richness of small gastropods (≤ 14 mm) was negatively correlated with round goby density across all sites, and declined over time at three of four sites sampled before and after invasion. Median gastropod size also declined across sites with increasing round goby density. Gastropods (as well as chironomid larvae, caddisfly larvae, and ostracods) were consistently among the most preferred prey items consumed by gobies, whereas dreissenids (as well as leeches and freshwater mites) were consistently avoided. These results indicate the major role of the round goby in structuring gastropod populations in the St. Lawrence River, and highlight large-scale spatial variation in its predatory impact on dreissenid populations.  相似文献   

2.
Invasive dreissenid mussels (D. polymorpha and D. r. bugensis) have fundamentally altered Laurentian Great Lake ecosystems, however in many areas their abundances have declined since the mid-1990s. Another invader, the benthic fish round goby (Neogobius melanostomus), is morphologically adapted to feed on dreissenids and likely affects dreissenid populations; however, the degree of this predatory effect is variable. In 2009 and 2010, we examined round goby abundances, size distributions, diet contents, and diet selectivity in Saginaw Bay, Lake Huron; a shallow bay that has been subjected to numerous anthropogenic stressors. We further used a consumption model to estimate dreissenid consumption by three different size classes of round goby. Round gobies were found throughout the bay and most were smaller than 80 mm total length. Round gobies of all sizes consumed dreissenids (including fish as small as 30 mm total length), though dreissenids were rarely preferred. The relative proportion of dreissenids (by biomass) present in diets of round gobies increased with fish size, but also throughout the year for all size classes. Despite this, overall consumptive effects of round gobies on dreissenids in Saginaw Bay were low. Many dreissenids present in the bay were larger than those consumed by round gobies. Bioenergetics-based model estimates suggest that the smallest round gobies are responsible for the majority of dreissenid consumption. While our findings are limited to soft substrates and influenced by sampling restrictions, our study design allowed us to put bounds on our estimates based upon these multiple sources of uncertainty.  相似文献   

3.
Deepwater sculpin Myoxocephalus thompsonii are an important component of Great Lake's offshore benthic food webs. Recent declines in deepwater sculpin abundance and changes in bathymetric distribution may be associated with changes in the deepwater food web of Lake Huron, particularly, decreased abundance of benthic invertebrates such as Diporeia. To assess how deepwater sculpins have responded to recent changes, we examined a fifteen-year time series of spatial and temporal patterns in abundance as well as the diets of fish collected in bottom trawls during fall of 2003, 2004, and 2005. During 1992–2007, deepwater sculpin abundance declined on a lake-wide scale but the decline in abundance at shallower depths and in the southern portion of Lake Huron was more pronounced. Of the 534 fish examined for diet analysis, 97% had food in the stomach. Mysis, Diporeia, and Chironomidae were consumed frequently, while sphaerid clams, ostracods, fish eggs, and small fish were found in only low numbers. We found an inverse relationship between prevalence of Mysis and Diporeia in diets that reflected geographic and temporal trends in abundance of these invertebrates in Lake Huron. Because deepwater sculpins are an important trophic link in offshore benthic food webs, declines in population abundance and changes in distribution may cascade throughout the food web and impede fish community restoration goals.  相似文献   

4.
Although numerous studies have shown that round gobies (Neogobius melanostomus) prey on dreissenid mussels (Dreissena polymorpha and Dreissena bugensis), there is an apparent shortage of detailed field studies on the subject. The 5-month field study described here quantifies predation by round gobies on dreissenids in Presque Isle Bay, Lake Erie. Dreissenids dominated the diet of round gobies, composing 92% of the prey items recovered. Over half of the 3870 valves (1935 mussels) recovered from 155 round gobies were crushed, while the remainder were swallowed whole. Crushed dreissenids were larger than those swallowed whole, and the tendency to crush dreissenids did not vary among three length classes of round goby. Round goby length was positively related to average size of dreissenids consumed, average size of whole and crushed dreissenids, largest whole dreissenid consumed, and largest crushed dreissenid consumed. Indices of selectivity revealed similarly shaped curves for three length classes of round gobies, a shift toward larger dreissenid size classes with an increase in round goby length, and peak preferences for 8-11 mm dreissenids. Factors such as gape limitation, availability and accessibility of differently sized dreissenids, forces generated while removing mussels from the substrate and crushing them, and caloric content of dreissenids all likely play roles in the observed size-selectivity and differential processing of dreissenids. Although factors influencing size-selectivity are not completely understood, the observed preference of round gobies for dreissenids near the size when they are first reproductive could impact the demography of dreissenid populations.  相似文献   

5.
The proliferation of the invasive round goby (Apollonia melanostoma) in the Great Lakes has caused shifts in the trophic ecology in some areas. We examined the diet of double-crested cormorants (Phalacrocorax auritas) prior to, and immediately after, round goby population expansion at two colonies, Pigeon and Snake Islands, in eastern Lake Ontario from 1999 to 2007. Cormorant diet was determined from the examination of 10,167 pellets collected over the nine-year period. By the second year round gobies were found in the diet (2002 at Snake Island and 2003 at Pigeon Island) they were the main species consumed by cormorants at each colony. The dominance of round goby in cormorant diets had a significant effect on both daily fish consumption and seasonal trends in fish consumption compared to the pre-goby years. Seasonal differences that were observed during the pre-goby years were lost once gobies became the main diet component of cormorants. The rapid switch to a benthic prey such as round goby, from a largely limnetic fish diet demonstrates the adaptive foraging ability of cormorants. Round goby may act as a buffer for yellow perch and smallmouth bass, two sport fish impacted by cormorant predation in eastern Lake Ontario.  相似文献   

6.
Since the first reports of mortalities due to viral hemorrhagic septicemia virus (VHSV) type IVb in the Laurentian Great Lakes basin during 2005 (Lake St. Clair, USA and Bay of Quinte, Lake Ontario, Canada), many groups have conducted surveillance efforts for the virus, primarily in nearshore areas. The round goby (Neogobius melanostomus) has been identified as a key species to target for surveillance, because they have a very high probability of infection at a given site. Our objective in this study was to document and quantify VHSV in round gobies in offshore waters of Lake Ontario using molecular techniques. We collected 139 round gobies from depths ranging from 55 to 150 m using bottom trawls during the early spring of 2011 and detected VHSV in 4 individuals (1/26 fish at 95 m, 2/12 fish at 105 m, and 1/24 fish at 135 m). These results expand the known depth range of VHSV in the Great Lakes. They also have implications on the management of the spread of VHSV within infected bodies of water related to the mixing of populations of fish that would remain distinct in their breeding habitats, but then have the opportunity to mix in their overwintering habitats, as well as to increase overlap of predator and prey species in overwintering habitats.  相似文献   

7.
In Lake Erie and Lake Ontario, the Ponto-Caspian amphipod Echinogammarus ischnus has replaced the native amphipod Gammarus fasciatus on rocky substrates colonized by dreissenid mussels, which provide interstitial refugia for small invertebrates. Based on the premise that an invader's vulnerability to predation is influenced by its evolutionary experience with the predator and its ability to compete for refugia, we hypothesized that amphipod species replacement is facilitated through selective predation by the round goby Neogobius melanostomus, a Ponto-Caspian fish that invaded the Great Lakes in the early 1990s and is now colonizing the St. Lawrence River. In laboratory experiments, we determined if E. ischnus excludes G. fasciatus from mussel patches, and if the vulnerability of G. fasciatus to predation by gobies is increased in the presence of the invasive amphipod. E. ischnus and G. fasciatus did not differ in their use of mussel patches, either when alone or in each other's presence. Both species were equally vulnerable to predation by the round goby. In field experiments, we determined if the round goby exerts a stronger impact than native predators on the relative abundance of amphipod species. Our results suggest that E. ischnus is more vulnerable to native predators, but the round goby does not have a differential impact on the native amphipod. We conclude that competition with E. ischnus does not increase the vulnerability of G. fasciatus to goby predation, and that the round goby does not promote the replacement of G. fasciatus by E. ischnus in the St. Lawrence River. The outcome of antagonistic interactions between exotic and native amphipods is mediated more by abiotic factors than by shared evolutionary history with other co-occurring exotic species.  相似文献   

8.
The round goby (Neogobius melanostomus Pallas), a fish native to eastern Europe, recently has become established in southwestern Lake Michigan. Because round gobies prey on zebra mussels (Dreissena polymorpha Pallas) and other benthic invertebrates, the effects of round gobies on invertebrates within zebra mussel colonies was investigated. Using a 2 × 3 factorial design, the effects of round gobies (present or absent) and zebra mussel densities (zero, low, and high) on non-mussel invertebrates was examined. Ten ceramic tiles of each mussel density were colonized in the laboratory and then anchored in Calumet Harbor, IL for 10 weeks. Round gobies had access to half the tiles while half were covered with coarse mesh screening that excluded round gobies, but allowed invertebrates to move into and out of the exclosures. Low and high zebra mussel density tiles supported significantly greater numbers of non-mussel invertebrates (p < 0.001) than zero density tiles, particularly amphipods (p < 0.001), hydroptilid caddisflies (p < 0.05), isopods (p < 0.05), and chironomids (p < 0.001). Chlorophyll a concentrations were highest (p < 0.001) at low zebra mussel densities. The presence of round gobies significantly reduced densities of total non-mussel invertebrates (p < 0.01) and leptocerid caddisflies (p < 0.05), resulting in a significant increase in chlorophyll a (p < 0.01) concentrations. A significant zebra mussel density x round goby interaction showed that total invertebrate biomass responded positively to the combined effect of high zebra mussel density and round goby absence. These results demonstrate that round gobies and zebra mussels are altering benthic invertebrate community structure and algal resources in nearshore rocky areas of southwestern Lake Michigan.  相似文献   

9.
Diporeia hoyi and Mysis relicta are the most important prey items of slimy sculpins (Cottus cognatus) in the Great Lakes. Slimy sculpins were collected from dreissenid-infested bottoms off seven Lake Michigan ports at depths of 27–73 m in fall 2003 to study their lake-wide diets. Relatively large dreissenid biomass occurred at depths of 37- and 46-m. Quagga mussels (Dreissena bugnesis) composed at least 50% of dreissenid biomass at Manistique, Saugatuck, and Sturgeon Bay. Mysis accounted for 82% of the sculpin diet by dry weight at eastern Lake Michigan while Diporeia composed 54–69% of the diet at western Lake Michigan and dominated the diets of slimy sculpins at all sites deeper than 46 m. In northern Lake Michigan, this diet study in new sites showed that slimy sculpin consumed more prey with low energy contents, especially chironomids, than Mysis and Diporeia in shallow sites (depth <55 m). We recommend diet studies on sedentary benthic fishes to be conducted along perimeters of the Great Lakes to observe changes in their diets that may be impacted by changing benthic macroinvertebrate communities.  相似文献   

10.
This laboratory study examined the influence of substratum complexity and water clarity/visibility on non-indigenous round goby (Neogobius melanostomus) diet choice between dreissenid mussels (Dreissena polymorpha and D. bugensis, 6 to 9 mm length) and the exotic amphipod Echinogammarus ischnus. When both prey items were offered simultaneously in bare 20-L aquaria holding clear ambient water, 6.5 to 8-cm round gobies chose primarily amphipods (> 85% of diet numerically) and consumed fewer dreissenids (< 2/h) than when mussels were offered alone (5.2/h). Round gobies could ingest substantially more biomass when feeding on a mixed diet (∼17 to 24 mg/h dry weight, not including dreissenid shells) or on amphipods alone (∼26 mg/h), than feeding on dreissenids alone (∼12 mg/h). Longer handling time of mussels may thus have influenced the round gobies’ preference for amphipods. Added substrata (stones or gravel) and/or diminished visibility (turbid water or darkness) shifted round goby diet markedly towards sessile dreissenids as motile amphipods found refuge. Two-way ANOVA indicated that both substratum and water clarity/visibility significantly influenced round goby diet, but did not interact. It is possible that the large contribution of dreissenids to round goby diet in the Great Lakes may not necessarily reflect a preference for them, but rather lower encounter rates with more profitable prey.  相似文献   

11.
This study evaluated yellow perch (Perca flavescens) diet in southern Lake Michigan to determine whether prey consumed fluctuated with abundance of zooplankton, benthic invertebrates, and fish species during the period 1984 to 2002. Some change in benthic community abundance was evident from samples collected in the region during the period, including the naturalization of the round goby and the zebra mussel between 1993 and 2002. In addition, changes in fish abundance were evident from 1984 to 2002, when spottail shiner (Notropis hudsonius) and alewife (Alosa pseudoharengus) increased, while yellow perch, and rainbow smelt (Osmerus mordax) declined. Non-indigenous species eaten by yellow perch in 2002 included spiny water fleas (Bythotrephes longimanus), round gobies, and alewives with the latter two species dominating the diet by volume. Yellow perch did exhibit prey preferences, although they consumed a variety of different organisms over the period of study. This euryphagous characteristic of yellow perch is expected to promote its persistence in southern Lake Michigan, despite a changing prey base.  相似文献   

12.
We assessed round goby (Apollonia melanostoma) density and size structure in two sections of the Bay of Quinte (Lake Ontario) that had been invaded by this species two years apart. Round goby density was assessed with 50 m linear transects, recorded with an underwater video recording apparatus developed for this study that included a depth sounder for maintaining a fixed distance above the substrate. The highest mean round goby densities were observed in the shallowest depth zone (1.5–3 m) at both sites, but there were differences between the sites in the habitat types where the highest densities occurred and there were no significant density differences among habitat types at either site (rock with sparse vegetation, mud with sparse vegetation, sand/mud with moderate vegetation cover). In the upper bay, mean body length of round gobies declined with depth, whereas in the lower bay, mean round goby length was greatest in the deepest zone. Mean body length of round gobies did not differ significantly by habitat type in either section of the bay.  相似文献   

13.
We studied the impact of round gobies (Neogobius melanostomus) on lithophilic invertebrates (having an association with a stony substrate) across an invasion front along the Door Peninsula, which flanks eastern Green Bay, Lake Michigan. We conducted both a cross-invasion front field survey and a rock-transfer experiment. For the field survey, we collected pairs of rocks from ten sites, including sites north of the invasion front and south of the invasion front. Zebra mussels (Dreissena polymorpha), quagga mussels (D. bugensis), and non-mussel invertebrates were removed from the rocks and enumerated. The rocks were measured and the algae removed and weighed. Round gobies were censused by videotaping along transects. There was a statistically significant negative relationship with round goby abundance for most invertebrates, including zebra mussels, quagga mussels, isopods, and snails, with the result for amphipods being suggestive. For the experiment, we transferred 20 rocks in bags from a round goby “absent” site with 10 going to a round goby abundant site and 10 being returned to the original site. The rocks incubated overnight, invertebrates were removed the next day, and the rocks were measured. There were significantly fewer zebra mussels, quagga mussels, isopods, amphipods, and snails from the rocks incubated at the round goby abundant site compared to those returned to the round gobyfree site. Thus, the results of the survey and rock-transfer experiment suggest that round gobies are influencing the benthic macroinvertebrate abundance through predation. The negative impact on mussels is probably due to direct predation while the negative impact on the other invertebrates may be a combination of direct predation and indirect effects due to the loss of the microhabitat or food that zebra mussels produce.  相似文献   

14.
Mysis diluviana is an important prey item to the Lake Superior fish community as found through a recent diet study. We further evaluated this by relating the quantity of prey found in fish diets to the quantity of prey available to fish, providing insight into feeding behavior and prey preferences. We describe the seasonal prey selection of major fish species collected across 18 stations in Lake Superior in spring, summer, and fall of 2005. Of the major nearshore fish species, bloater (Coregonus hoyi), rainbow smelt (Osmerus mordax), and lake whitefish (Coregonus clupeaformis) consumed Mysis, and strongly selected Mysis over other prey items each season. However, lake whitefish also selected Bythotrephes in the fall when Bythotrephes were numerous. Cisco (Coregonus artedi), a major nearshore and offshore species, fed largely on calanoid copepods, and selected calanoid copepods (spring) and Bythotrephes (summer and fall). Cisco also targeted prey similarly across bathymetric depths. Other major offshore fish species such as kiyi (Coregonus kiyi) and deepwater sculpin (Myoxocephalus thompsoni) fed largely on Mysis, with kiyi targeting Mysis exclusively while deepwater sculpin did not prefer any single prey organism. The major offshore predator siscowet lake trout (Salvelinus namaycush siscowet) consumed deepwater sculpin and coregonines, but selected deepwater sculpin and Mysis each season, with juveniles having a higher selection for Mysis than adults. Our results suggest that Mysis is not only a commonly consumed prey item, but a highly preferred prey item for pelagic, benthic, and piscivorous fishes in nearshore and offshore waters of Lake Superior.  相似文献   

15.
Cyathocephalus truncatus is a pathogenic cestode that is common in many Laurentian Great Lakes fish species, but the depth distribution of this cestode has not been studied. Cyathocephalus truncatus has been reported from 21 fish species and one hybrid representing seven orders and nine families in Lakes Superior, Michigan, Huron, and Ontario. We examined the intestinal contents of six species of fish collected in Michigan waters of Lake Huron, from DeTour to Harbor Beach, in 2001 to 2003 for the presence of this cestode species. Cyathocephalus truncatus was found in five native fish species and the exotic round goby. Prevalence (52%) and mean intensity (4.6 cestodes per infected fish) were highest in bloaters. This is the first reported occurrence of this cestode in round gobies from the Great Lakes. None of the gobies trawled from Lake Huron at depths of 27 to 46 m were infected, but prevalence and intensity of infection in round gobies increased significantly with depth from 55 to 73 m. Our diet study of round gobies indicated that they preyed heavily on amphipods (Diporeia hoyi) at depths of 55 to 73 m. Cyathocephalus truncatus was found in eight of 605 D. hoyi obtained by Ponar grab sampling. This suggests that C. truncatus eggs may be released from infected gobies and sink to deep basins with silt bottoms where D. hoyi occur.  相似文献   

16.
Round gobies (Neogobius melanostomus) from the upper St. Lawrence River (USLR) have an abundance of some of the largest individuals recorded from the Great Lakes (>230-mm total-length). We found a distinct separation in diet and isotopic signatures (δ15N and δ13C) between round goby classified as small (≤130-mm; n = 63) and large (>130-mm total-length; n = 75) from USLR coastal bays. At small sizes, round gobies had variable diets indicative of generalist and opportunistic feeding on native and non-indigenous benthic prey. Between 100 and 130-mm total-length, signatures of assimilated carbon (δ13C) indicated a directed shift towards a dreissenid-centric diet and once larger than 130-mm total-length, round gobies appeared to feed proportionally more on dreissenid mussels. We also found that large round gobies fed proportionally more on Hydrobiidae than small round gobies. A weak negative relationship between δ15N (indicative of trophic position) and round gobies total length resulted where smaller round gobies had slightly higher δ15N values than larger conspecifics. Round gobies larger than 180-mm total-length were common in nearshore habitats (≤2-m) during the spring, and dreissenid mussels and Hydrobiidae were the most frequently encountered prey. Our results demonstrate elevated reliance on dreissenids as round goby increased body size, but the diversity of prey suggest more complex trophodynamic pathways associated with coastal bay habitats.  相似文献   

17.
18.
We used data from three trawl surveys during 1996–2003 to document range expansion, population trends, and use of offshore habitats by round gobies in the U.S. waters of Lake Huron. Round gobies (Neogobius melanostomus) were not detected in any survey until 1997, but by 2003 they had been recorded at 18 of the 28 sites sampled. The only areas not colonized were offshore habitats in northern Lake Huron. Round goby abundance increased during 1997–2001, thereafter overall abundance either increased (offshore) or became variable (near shore and Saginaw Bay). Mean lengths varied among surveys primarily due to high abundance of age-0 gobies in Saginaw Bay samples. Round gobies were found up to 34 km offshore at depths of 73 m. Round gobies consumed a wide range of invertebrate prey, but focused on dreissenids in shallow water (27–46 m), and native invertebrates at greater depths. The pattern of round goby dispersal was consistent with a pattern of simultaneous initial introductions at shipping ports followed by natural dispersal, and lake wide population size has probably not stabilized.  相似文献   

19.
Recent invasion theory has hypothesized that newly established exotic species may initially be free of their native parasites, augmenting their population success. Others have hypothesized that invaders may introduce exotic parasites to native species and/or may become hosts to native parasites in their new habitats. Our study analyzed the parasites of two exotic Eurasian gobies that were detected in the Great Lakes in 1990: the round goby Apollonia melanostoma and the tubenose goby Proterorhinus semilunaris. We compared our results from the central region of their introduced ranges in Lakes Huron, St. Clair, and Erie with other studies in the Great Lakes over the past decade, as well as Eurasian native and nonindigenous habitats. Results showed that goby-specific metazoan parasites were absent in the Great Lakes, and all but one species were represented only as larvae, suggesting that adult parasites presently are poorly-adapted to the new gobies as hosts. Seven parasitic species are known to infest the tubenose goby in the Great Lakes, including our new finding of the acanthocephalan Southwellina hispida, and all are rare. We provide the first findings of four parasite species in the round goby and clarified two others, totaling 22 in the Great Lakes—with most being rare. In contrast, 72 round goby parasites occur in the Black Sea region. Trematodes are the most common parasitic group of the round goby in the Great Lakes, as in their native Black Sea range and Baltic Sea introduction. Holarctic trematode Diplostomum spathaceum larvae, which are one of two widely distributed species shared with Eurasia, were found in round goby eyes from all Great Lakes localities except Lake Huron proper. Our study and others reveal no overall increases in parasitism of the invasive gobies over the past decade after their establishment in the Great Lakes. In conclusion, the parasite “load” on the invasive gobies appears relatively low in comparison with their native habitats, lending support to the “enemy release hypothesis.”  相似文献   

20.
Predation is one of the primary mechanisms that shape aquatic food webs and predator–prey interactions are typically highly dependent on sizes of both forager and its prey. Round goby Neogobius melanostomus is a recent invader to the Great Lakes and can be an important prey item for native predators. However, predation patterns on round gobies have received limited attention. We assessed size-specific predator–prey interactions between invasive round gobies and native yellow perch Perca flavescens by comparing prey preferences for three size classes of adult yellow perch foraging on six size classes of round gobies. Small yellow perch preferred the smallest round gobies available, medium sized yellow perch increased the range of round goby sizes consumed but still preferred smaller prey, whereas large yellow perch consumed larger round gobies and excluded the smallest prey size. Yellow perch foraging behaviors indicated that intermediate sizes of round gobies were struck at most frequently and that pursuit and handling time increased whereas capture efficiency and prey profitability decreased with round goby size. Our results indicate that predator–prey interactions between yellow perch and round gobies may be size dependent and heavily influenced by capture efficiency and prey profitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号