首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This paper is presented to investigate operational characteristics of a direct methanol fuel cell (DMFC) stack with regard to fuel and energy efficiency, including its performance and stability under various operating conditions. Fuel efficiency of the DMFC stack is strongly dependent on fuel concentration, working temperature, current density, and anode channel configuration in the bipolar plates and noticeably increases due to the reduced methanol crossover through the membrane, as the current density increases and the methanol concentration, anode channel depth, and temperature decreases. It is, however, revealed that the energy efficiency of the DMFC stack is not always improved with increased fuel efficiency, since the reduced methanol crossover does not always indicate an increase in the power of the DMFC stack. Further, a lower methanol concentration and temperature sacrifice the power and operational stability of the stack with the large difference of cell voltages, even though the stack shows more than 90% of fuel efficiency in this operating condition. The energy efficiency is therefore a more important characteristic to find optimal operating conditions in the DMFC stack than fuel efficiency based on the methanol utilization and crossover, since it considers both fuel efficiency and cell electrical power. These efforts may contribute to commercialization of the highly efficient DMFC system, through reduction of the loss of energy and fuel.  相似文献   

2.
A simple model is presented to describe the permeation of methanol from the anode to the cathode in direct methanol fuel cell (DMFC). Measured permeation rates of water and methanol through Nafion® 117 under varied pressure differentials across the membrane are used to determine key parameters in the model. This model is able to explain the effect of oxygen pressure at the cathode and methanol concentration at the anode on the measured cell voltage-current response of the DMFC.  相似文献   

3.
《Journal of power sources》2006,161(2):1192-1197
The effect of discharge rate of direct methanol fuel cell (DMFC) on fuel efficiency was comparatively investigated using a DMFC single cell and a DMFC system. The results obtained from the single cell were used to model the DMFC system. Several semi-empirical equations were derived that relate discharge current, voltage, power output, energy density and fuel consumption for a nominal 25 W DMFC system. The decrease in fuel efficiency with decreased power output that is observed for the DMFC system is attributable to the increase of methanol crossover that can be observed for an individual cell. A DMFC system can achieve maximum energy density and fuel efficiency at an appropriately high level of power output.  相似文献   

4.
A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol fuel cell (DMFC) operating with neat methanol. The neat methanol operation is realized by using a ‘pervaporation’ membrane that allows the methanol concentration from the neat methanol in the fuel reservoir to be declined to an appropriate level in the anode catalyst layer (CL). The water required by the methanol oxidation reaction on the anode is passively obtained by diffusion from the cathode through the membrane. The numerical results indicate that the methanol delivery rate from the fuel reservoir to the anode CL is predominately controlled by the pervaporation process. It is also found that under the neat methanol operating condition, water distribution across the membrane electrode assembly is greatly influenced by the membrane thickness, the cathode design, the operating temperature, and the ambient relative humidity.  相似文献   

5.
《Journal of power sources》2006,159(2):1105-1114
A semi-empirical equation was proposed to simulate the behavior of a direct methanol fuel cell (DMFC). The individual voltage losses in a DMFC due to methanol crossover and the overpotentials of both the cathode and anode can be distinguished. Three sets of experiments were designed and carried out to account for the three voltage losses. The values of each parameter in the model were then calculated and the computation showed that the fitted result and the experimental data were well matched. The relation between each significant phenomena and each parameter is discussed. The model quantitatively identified the major voltage losses to be both the sluggish reaction of methanol oxidation on the anode and the slow oxygen reduction on the cathode. The impact on cell performance by manipulating individual parameters is also discussed.  相似文献   

6.
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm−2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.  相似文献   

7.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

8.
In this work, an anode flow field that allows a direct methanol fuel cell (DMFC) to operate with highly concentrated methanol is developed and tested. The basic idea of this flow field design is to vaporize methanol solution in the flow field by utilizing the heat generated from the fuel cell so that the methanol concentration in the anode catalyst layer can be controlled to an appropriate level. The flow field is composed of two parallel flow channel plates, separated with a gap. The upper plate with a grooved serpentine flow channel is to vaporize a highly concentrated methanol solution to ensure the fuel to be completely vaporized before it enters the gap, while the lower plate, perforated to form a serpentine flow channel and located between the gap and the membrane electrode assembly (MEA), is to uniformly distribute the fuel onto the anode surface of the MEA. The test results show that this unique flow field design enables the DMFC operating with 16.0-M methanol to yield a power output similar to that with the conventional flow field design with 2.0-M methanol, significantly increasing the specific energy of the DMFC system. Finally, the effects of methanol solution flow rates and operating temperature on cell performance are investigated.  相似文献   

9.
A non-isothermal dynamic optimization model of direct methanol fuel cells (DMFCs) is developed to predict their performance with an effective optimum-operating strategy. After investigating the sensitivities of the transient behaviour (the outlet temperature, crossovers of methanol and water, and cell voltage) to operating conditions (the inlet flow rates into anode and cathode compartments, and feed concentration) through dynamic simulations, we find that anode feed concentration has a significantly larger impact on methanol crossover, temperature, and cell voltage than the anode and cathode flow rates. Also, optimum transient conditions to satisfy the desired fuel efficiency are obtained by dynamic optimization. In the developed model, the significant influence of temperature on DMFC behaviour is described in detail with successful estimation of its model parameters.  相似文献   

10.
Methanol crossover, water crossover, and fuel efficiency for a passive liquid-feed direct methanol fuel cell (DMFC) were all experimentally determined based on the mass balance of the cell discharged under different current loads. The effects of different operating conditions such as current density and methanol concentration, as well as the addition of a hydrophobic water management layer, on the methanol and water crossover were investigated. Different from the active DMFC, the cell temperature of the passive DMFC increased with the current density, and the changes of methanol and water crossover with current density were inherently coupled with the temperature rise. When feeding with 2–4 M methanol solution, with an increase in current density, both the methanol crossover and the water crossover increased, while the fuel efficiency first increased but then decreased slightly. The results also showed that a reduction of water crossover from the anode to the cathode was always accompanied with a reduction of methanol crossover. Not only did the water management layer result in lower water crossover or achieve neutral or reverse water transport, but it also lowered the methanol crossover and increased the fuel efficiency.  相似文献   

11.
A two-dimensional two-phase thermal model is presented for direct methanol fuel cells (DMFC), in which the fuel and oxidant are fed in a passive manner. The inherently coupled heat and mass transport, along with the electrochemical reactions occurring in the passive DMFC is modeled based on the unsaturated flow theory in porous media. The model is solved numerically using a home-written computer code to investigate the effects of various operating and geometric design parameters, including methanol concentration as well as the open ratio and channel and rib width of the current collectors, on cell performance. The numerical results show that the cell performance increases with increasing methanol concentration from 1.0 to 4.0 M, due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode and the increased mass transfer rate of methanol. It is also shown that the cell performance upgrades with increasing the open ratio and with decreasing the rib width as the result of the increased mass transfer rate on both the anode and cathode.  相似文献   

12.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports on a chromatography-based method for determining the water concentration in the anode catalyst layer (CL) of a direct methanol fuel cell (DMFC). By this method, the effect of the water concentration in the anode CL on the product distribution of the methanol oxidation reaction (MOR), the anode potential, and the cell internal resistance is experimentally investigated in a DMFC operating with neat methanol. Interestingly, it is found that the main product of the anode MOR is still carbon dioxide even when the water concentration in the anode CL is extremely low. The experimental data also show that an increase in the water concentration in the anode CL decreases the internal resistance, the production of by-products (methyl formate and methylal), and the anode potential. As the mole ratio of water to methanol increases beyond a critical value, however, both the internal resistance and the anode potential tend to be stabilized at the points under diluted methanol operating conditions.  相似文献   

14.
It is desirable to operate a direct methanol fuel cell (DMFC) with neat methanol to maximize the specific energy of the DMFC system, and hence increasing its runtime. A way to achieve the neat-methanol operation is to passively transport the water produced at the cathode through the membrane to the anode to facilitate the methanol oxidation reaction (MOR). To achieve a performance of the MOR similar to that under the conventional diluted methanol operation, both the water transport rate and the local water concentration in the anode catalyst layer (CL) are required to be sufficiently high. In this work, a thin layer consisting of nanosized SiO2 particles and Nafion ionomer (referred to as a water retention layer hereafter) is coated onto each side of the membrane. Taking advantage of the hygroscopic nature of SiO2, the cathode water retention layer can help maintain the water produced from the cathode at a higher concentration level to enhance the water transport to the anode, while the anode retention layer can retain the water that is transported from the cathode. As a result, a higher water transport rate and a higher water concentration at the anode CL can be achieved. The formed membrane electrode assembly (MEA) with the added water retention layers is tested in a passive DMFC and the results show that this MEA design yields a much higher power density than the MEA without water retention layers does.  相似文献   

15.
A kinetic model for the anode of the direct methanol fuel cell (DMFC) is presented. The model is based on the generally accepted dual site mechanism of methanol oxidation, in aqueous solution, on well characterized Pt–Ru catalyst and it can predict the performance of the electrode as a function of cell temperature, anode potential and methanol concentration. In addition the model also generates data regarding the surface coverage of significant adsorbates involved in methanol oxidation on the dual site catalyst.  相似文献   

16.
《Journal of power sources》2002,112(2):367-375
A mathematical model for the anode of a direct methanol fuel cell (DMFC) is presented. This model considers the mass transport in the whole anode compartment and the proton exchange membrane (PEM), together with the kinetic and ohmic resistance effects through the catalyst layer. The influence of key parameters on methanol crossover and anode performance is investigated. Our results indicate that, at low current density and high methanol concentration, the methanol crossover poses a serious problem for a DMFC. The anodic overpotential and reaction-rate distributions throughout the catalyst layer are more sensitive to the protonic conductivity than to the diffusion coefficient of methanol. Increasing the protonic conductivity can effectively enhance the performance of a DMFC.  相似文献   

17.
The effect of anode current collector on the performance of passive direct methanol fuel cell (DMFC) was investigated in this paper. The results revealed that the anode of passive DMFC with perforated current collector was poor at removing the produced CO2 bubbles that blocked the access of fuel to the active sites and thus degraded the cell performance. Moreover, the performances of the passive DMFCs with different parallel current collectors and different methanol concentrations at different temperatures were also tested and compared. The results indicated that the anode parallel current collector with a larger open ratio exhibited the best performance at higher temperatures and lower methanol solution concentrations due to enhanced mass transfer of methanol from the methanol solution reservoir to the gas diffusion layer. However, the passive DMFC with a smaller open ratio of the parallel current collector exhibited the best performance at lower temperatures and higher methanol solution concentrations due to the lower methanol crossover rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We present controlled experiments on a miniature direct methanol fuel cell (DMFC) to study the effects of methanol flow rate, current density, and void fraction on pressure drop across the DMFC anode. We also present an experimental technique to measure void fraction, liquid slug length, and velocity of the two-phase slug flow exiting the DMFC. For our channel geometry in which the diameter of the largest inscribed sphere (a) is 500 μm, pressure drop scales with the number of gas slugs in the channel, surface tension, and a. This scaling demonstrates the importance of capillary forces in determining the hydrodynamic characteristics of the DMFC anode. This work is aimed at aiding the design of fuel pumps and anode flow channels for miniature DMFC systems.  相似文献   

19.
This work examines the effect of fuel delivery configuration on the performance of a passive air-breathing direct methanol fuel cell (DMFC). The performance of a single cell is evaluated while the methanol vapour is supplied through a flow channel from a methanol reservoir connected to the anode. The oxygen is supplied from the ambient air to the cathode via natural convection. The fuel cell employs parallel channel configurations or open chamber configurations for methanol vapour feeding. The opening ratio of the flow channel and the flow channel configuration is changed. The opening ratio is defined as that between the area of the inlet port and the area of the outlet port. The chamber configuration is preferred for optimum fuel feeding. The best performance of the fuel cell is obtained when the opening ratio is 0.8 in the chamber configuration. Under these conditions, the peak power is 10.2 mW cm−2 at room temperature and ambient pressure. Consequently, passive DMFCs using methanol vapour require sufficient methanol vapour feeding through the flow channel at the anode for best performance. The mediocre performance of a passive DMFC with a channel configuration is attributed to the low differential pressure and insufficient supply of methanol vapour.  相似文献   

20.
In a direct methanol fuel cell (DMFC), optimized multilayer electrode design is critical to mitigate methanol crossover and improve cell performance. In this paper, we present a one-dimensional (1-D) two-phase model based on the saturation jump theory in order to explore the methanol and water transport characteristics using various multilayer electrode configurations. To experimentally validate the 1-D model, two different membrane electrode assemblies (MEAs) with and without an anode microporous layer (MPL) are fabricated and tested under various cell current density and methanol feed concentration conditions. Then, 1-D DMFC simulations are performed and the results compared to the experimental data. In general, the numerical predictions are in good agreement with the experimental data; thus, the 1-D DMFC simulations successfully model the effects of the anode MPL that were observed experimentally. In addition to the comparison study, additional numerical simulations are carried out to precisely examine the role of the anode and cathode MPLs and the effect of the hydrophobicity of the anode catalyst layer on the water and liquid saturation distributions inside the DMFCs. This paper demonstrates the quantitative accuracy of the saturation jump model for simulating multilayer DMFC MEAs and also provides greater insight into the operational characteristics of DMFCs incorporating multilayer electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号