首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a gas diffusion layer (GDL) was modified to improve the water management ability of a proton exchange membrane fuel cell (PEMFC). We developed a novel hydrophobic/hydrophilic double micro porous layer (MPL) that was coated on a gas diffusion backing layer (GDBL). The water management properties, vapor and water permeability, of the GDL were measured and the performance of single cells was evaluated under two different humidification conditions, R.H. 100% and 50%. The modified GDL, which contained a hydrophilic MPL in the middle of the GDL and a hydrophobic MPL on the surface, performed better than the conventional GDL, which contained only a single hydrophobic MPL, regardless of humidity, where the performance of the single cell was significantly improved under the low humidification condition. The hydrophilic MPL, which was in the middle of the modified GDL, was shown to act as an internal humidifier due to its water absorption ability as assessed by measuring the vapor and water permeability of this layer.  相似文献   

2.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

3.
Past studies have shown that both the substrate and microporous layer of the gas diffusion layer (GDL) significantly affect water balance and performance of a proton exchange membrane (PEM) fuel cell. However, little effort has been made to investigate the importance of GDL properties on the durability of PEM fuel cells. In this study, the in situ degradation behaviour of a commercial GDL carbon fiber paper with MPL was investigated under a combination of elevated temperature and elevated flow rate conditions. To avoid the possible impact of the catalyst layer during degradation test, different barriers without catalyst were utilized individually to isolate the anode and cathode GDLs. Three different barriers were evaluated on their ability to isolate GDL degradation and their similarity to a fuel cell environment, and finally a novel Nafion/MPL/polyimide barrier was chosen. Characterization of the degraded GDL samples was conducted through the use of various diagnostic methods, including through-plane electrical resistivity measurements, mercury porosimetry, relative humidity sensitivity, and single-cell performance curves. Noticeable decreases in electrical resistivity and the hydrophobic properties were detected for the degraded GDL samples. The experimental results suggested that material loss plays an important role in GDL degradation mechanisms, while excessive mechanical stress prior to degradation weakens the GDL structure and changes its physical property, which consequently accelerates the material loss of the GDL during aging.  相似文献   

4.
A gas diffusion layer (GDL) facilitates the diffusion of reactant gas and the discharge of the generated water. The GDL performs various functions, such as conducting heat and electrons generated by electrochemical reactions and providing mechanical support for the catalyst layer. In this study, the effects of ratio variation in the substrate and microporous layer (MPL) penetration region on the proton exchange membrane fuel cell (PEMFC) performance were investigated. Furthermore, the reasons for these performance tendencies are explained based on the thermogravimetric analysis, contact angle, scanning electron microscopy, mercury porosimetry, electrical resistance, electrochemical impedance spectroscopy, and capillary pressure gradient. The experimental results indicate that the MPL penetration ratio within 15–20% of the total GDL thickness and the combined ratio of the MPL and MPL penetration within 35–40% is the best for the overall PEMFC performance. In addition, when the substrate ratio is excessively low, water flooding substantially occurs in the substrate, and this accumulated water functions as a back pressure, causing severe capillary condensation in the MPL penetration region and thus depriving the supply of the reactant gas.  相似文献   

5.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

6.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

7.
The gas diffusion layer (GDL) covered with a microporous layer (MPL) is being widely used in proton exchange membrane fuel cells (PEMFCs). However, the effect of MPL on water transport is not so clear as yet; hence, many studies are still being carried out. In this study, the effect of MPL on the performance degradation of PEMFCs is investigated in repetitive freezing conditions. Two kinds of GDL differentiated by the existence of MPL are used in this experiment. Damage on the catalyst layer due to freezing takes place earlier when GDL with MPL is used. More water in the membrane and catalyst layer captured by MPL causes permanent damage on the catalyst layer faster. More detailed information about the degradation is obtained by electrochemical impedance spectroscopy (EIS). From the point of view that MPL reduces the ohmic resistance, it is effective until 40 freezing cycles, but has no more effect thereafter. On the other hand, from the point of view that MPL enhances mass transport, it delays the increase in the mass transport resistance.  相似文献   

8.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   

9.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

10.
It is well known that a micro-porous layer (MPL) plays a crucial role in the water management of polymer electrolyte fuel cells (PEFCs), and thereby, significantly stabilizes and improves cell performance. To ascertain the exact roles of MPLs, a numerical MPL model is developed in this study and incorporated with comprehensive, multi-dimensional, multi-phase fuel-cell models that have been devised earlier. The effects of different porous properties and liquid-entry pressures between an MPL and a gas diffusion layer (GDL) are examined via fully three-dimensional numerical simulations. First, when the differences in pore properties and wettability between the MPL and GDL are taken into account but the difference in the entry pressures is ignored, the numerical MPL model captures a discontinuity in liquid saturation at the GDL|MPL interface. The simulation does not, however, capture the beneficial effects of an MPL on cell performance, predicting even lower performance than in the case of no MPL. On the other hand, when a high liquid-entry pressure in an MPL is additionally considered, the numerical MPL model predicts a liquid-free MPL and successfully demonstrates the phenomenon that the high liquid-entry pressure of the MPL prevents any liquid water from entering the MPL. Consequently, it is found from the simulation results that a liquid-free MPL significantly enhances the back-flow of water across the membrane into the anode, which, in turn, helps to avoid membrane dehydration and alleviate the level of GDL flooding. As a result, the model successfully reports the beneficial effects of MPLs on PEFC performance and predicts higher performance in the presence of MPLs (e.g., an increase of 67 mV at 1.5 A cm−2). This study provides a fundamental explanation of the function of MPLs and quantifies the influence of their porous properties and the liquid-entry pressure on water transport and cell performance.  相似文献   

11.
In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.  相似文献   

12.
The freezing characteristics of supercooled water in a gas diffusion layer (GDL), which are the bases for the cold start-up of proton exchange membrane fuel cells (PEMFCs), were investigated. An experimental apparatus for noncontact temperature measurement and observation systems was developed. GDL and GDL with a microporous layer (MPL) were prepared, and freezing experiments using a water-containing GDL under various cooling rates were performed with variations in polytetrafluoroethylene (PTFE) content and water saturation. Furthermore, based on the experimental results, the freezing initiation probability was theoretically investigated to elucidate the freezing characteristics. Results showed that, with increasing supercooling of water in GDL, the freezing probability of water increased abruptly. The effect of saturation showed a different trend depending on PTFE addition. For the GDL without PTFE, the freezing initiations occurred at approximately 6 °C of supercooling degree, and the probability approached 1.0 at approximately 9.5–11.5 °C, with saturation dependency. In contrast, for both GDL and GDL + MPL containing PTFE, the initiation temperature characteristics were relatively similar, which were approximately 8–12 °C, regardless of the saturation and PTFE content. In these cases, the ice-nucleating activity of water in the GDL was possibly stronger than that in the MPL.  相似文献   

13.
This study applied the pseudo-potential Lattice Boltzmann method (LBM) for investigating liquid water transport in the microporous layer (MPL) and gas diffusion layer (GDL) of polymer electrolyte fuel cell. The MPL and GDL reconstruction is performed by using a stochastic method. Unlike previous studies that examined the GDL as two distinct layers of hydrophilic and hydrophobic, this study considered the wettability heterogeneity. In the present study, some of the carbon fibers in the GDL are randomly considered hydrophilic. Moreover, liquid water transport in the compressed and uncompressed GDL with different hydrophilic fibers percentage are compared. The effect of hydrophilic fibers percentage and the compression ratio of the GDL on the liquid water saturation level, the steady-state time, and the formation and growth of droplets in the gas channel (GC) are investigated. The results indicated that more than 10% of hydrophilicity of the fibers lead to the formation of discontinuous water clusters. This phenomenon increased the steady-state time and water saturation level significantly. The simulation showed that compression increased the number of discontinuous water clusters in the GDL. The obtained results demonstrated that the hydrophilic fibers may have positive or negative effects on water transport in the GDL due to their location. In addition, this study indicated that for 10% of hydrophilic fibers with 10% compression, water saturation level and time required to reach steady-state decreased by 5.2% and 22% respectively compared to purely hydrophobic GDL.  相似文献   

14.
The water management role of a microporous layer (MPL) in a polymer electrolyte membrane fuel cell (PEMFC) is demonstrated experimentally by visualizing the drainage behaviors of a non-wetting fluid through multiple porous layers. An intermediate layer inserted between a fine layer and a coarse layer is observed to reduce the number of (the non-wetting fluid) breakthrough sites towards the coarse layer by merging many transport paths. Then, the reduced number of the breakthrough sites decreases the non-wetting fluid saturation in the coarse layer by minimizing capillary fingering process. These results clearly demonstrate the water management role of an MPL: An MPL reduces the liquid water breakthrough into a gas diffusion layer (GDL) by merging many paths from a catalyst layer (CL), and thereby reduces the liquid water saturation in the GDL.  相似文献   

15.
The influence of microporous layer (MPL) design parameters for gas diffusion layers (GDLs) on the performance of polymer electrolyte fuel cells (PEFCs) was clarified. Appropriate MPL design parameters vary depending on the humidification of the supplied gas. Under low humidification, decreasing both the MPL pore diameter and the content of polytetrafluoroethylene (PTFE) in the MPL is effective to prevent drying-up of the membrane electrode assembly (MEA) and enhance PEFC performance. Increasing the MPL thickness is also effective for maintaining the humidity of the MEA. However, when the MPL thickness becomes too large, oxygen transport to the electrode through the MPL is reduced, which lowers PEFC performance. Under high humidification, decreasing the MPL mean flow pore diameter to 3 μm is effective for the prevention of flooding and enhancement of PEFC performance. However, when the pore diameter becomes too small, the PEFC performance tends to decrease. Both reduction of the MPL thickness penetrated into the substrate and increase in the PTFE content to 20 mass% enhance the ability of the MPL to prevent flooding.  相似文献   

16.
A novel micro-porous layer (MPL) is designed to enhance the cold-start capability of a polymer electrolyte fuel cell (PEFC). The concept of designing an MPL is to expand the ice storage capacity of the electrode into the MPL region. We impose proton conduction capability and the oxygen reduction reaction (ORR) kinetic activity on the MPL via controlling the platinum (Pt) loading, ionomer fraction and weight ratio of Pt to the carbon support (wt%PtC) of the MPL. Therefore, the MPL is dual-functional, and can work as a typical MPL for normal PEFC operations and as a part of the cathode catalyst layer (CL) for cold-start operations. Three-dimensional (3-D) cold-start simulations are carried out by using a 3-D cold-start model developed in a previous study [1]. The detailed simulation results clearly suggest that the cold-start operational time can be extended significantly using a dual-function MPL, and the extended time is directly proportional to the pore volume of the MPL for ice storage. This study provides a new strategy to enhance the cold-start capability of a PEFC by properly designing and optimizing the MPL.  相似文献   

17.
A carbon nanofiber sheet (CNFS) has been prepared by electrospinning, stabilisation and subsequent carbonisation processes. Imaging with scanning electron microscope (SEM) indicates that the CNFS is formed by nonwoven nanofibers with diameters between 400 and 700 nm. The CNFS, with its three-dimensional pores, shows excellent electrical conductivity and hydrophobicity. In addition, it is found that the CNFS can be successfully applied as a micro-porous layer (MPL) in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC). The GDL with the CNFS as a MPL has higher gas permeability than a conventional GDL. Moreover, the resultant cathode GDL exhibits excellent fuel cell performance with a higher peak power density than that of a cathode GDL fabricated with a conventional MPL under the same test condition.  相似文献   

18.
Synchrotron X-ray micro-computed tomography (X-ray μCT) is employed to measure the volume variation of gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In the present study, 3D structures are reconstructed by merging orthogonal-plane images. Using the 3D reconstruction, the variation of structural parameters such as the porosity in GDL is investigated under freeze-thaw cycles. The freez-thaw cycles are established using cryo system and light source, respectively. As a result, a structural transformation is observed at the interface between GDL and micro porous layer (MPL). In addition, the porosity is critically changed with irreversible transition under freeze-thaw cycles.  相似文献   

19.
Micro porous layer (MPL) is a carbon layer (~15 μm) that coated on the gas diffusion layer (GDL) to enhance the electrical conduction and membrane hydration of proton exchange membrane fuel cell (PEMFC). However, the liquid transport behavior from MPL to GDL and its impact on water management remain unclear. Thus, a three-dimensional volume of fluid (VOF) model is developed to investigate the effects of MPL crack properties on liquid water saturation, liquid pathway formation, and the two-phase mass transport mechanism in GDL. Firstly, a stochastic orientation method is used to reconstruct the fibrous structure of the GDL. After that, the liquid water saturation calculated from the numerical results agrees well with the experimental data. With considering the full morphology of the overlap between MPL and GDL, it's found that this overlap determines the preferred liquid emerging port of both MPL and GDL. Three crack design shapes in MPL are proposed on the base of the similarity crack formation processes of soil mud. In addition, the effects of crack shape, distance between cracks, and crack number on liquid water transport from MPL to GDL are investigated. It is found that the liquid water saturation of GDL increases with crack number and the distance between cracks, while presents little correlation to the crack shape. Hopefully, these results can help the development of PEMFC models without reconstructing full MPL morphology.  相似文献   

20.
The effect of micro-porous layer (MPL) with hydrophobic gradient design on fuel cell performance and stability is investigated under various relative humidity (RH) conditions. Experimental results show that when such MPL is used between catalyst layer and gas diffusion layer, the membrane may retain more water and stay well humidified, and cell performance is increased at low RH conditions. On the other hand, at high RH conditions, the gradient MPL is able to efficiently remove water from the electrode, achieving maximum performance under these conditions. It is found that the design of hydrophobic gradient must take into consideration factors including gas permeability, electronic resistance and hydrophobic characteristics, because excessive hydrophobicity gradient in the MPL may result into high mass transfer resistance, which causes performance degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号