首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of power sources》2004,137(1):111-116
Magnesium oxide (MgO)-modified lithium cobalt oxide (LiCoO2) thin film electrodes were prepared by pulsed laser deposition (PLD) and effects of surface modification by MgO on interfacial reactions of LiCoO2 were studied. The modification by MgO was carried out by PLD on LiCoO2 thin film electrode successively after the deposition of LiCoO2 thin film by PLD. Auger electron spectroscopy suggested that Mg dispersed uniformly in nano-scale on the film electrode. Cyclic voltammetry measurements clearly showed that MgO modification suppresses the increase of resistances caused by repetition of lithium-ion insertion–extraction reaction charged up to 4.2 V versus Li/Li+. Moreover, MgO modification decreased the activation energy of lithium-ion transfer reaction at LiCoO2 thin film electrode–electrolyte interface, indicating that the modification by MgO affects the kinetics of lithium-ion transfer reaction at LiCoO2–electrolyte interface.  相似文献   

2.
The surface of commercial LiCoO2 was modified by molten salt method. The structure and electrochemical and thermal performances of the MgCl2-treated LiCoO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy and galvanostatic cycling. It is found that surface modification improves the structural and thermal stability as well as the rate performance of LiCoO2. These improvements were attributed to the formation of homogeneous solid solution on the surface of the LiCoO2 particle.  相似文献   

3.
《Journal of power sources》2006,162(2):823-828
We provide data on the changes in structure and composition of commercial LiNi0.8Co0.2O2 electrode materials for lithium-ion batteries occurring after surface coating with two types of metal oxides: electrochemically active LiCoO2 and inactive MgO. XRD analysis, SEM images, IR spectroscopy and EPR of low-spin Ni3+ ions were carried out for structural characterisation of coated LiNi0.8Co0.2O2 electrodes. Surface modification with LiCoO2 was found to be a more effective route for improving the cycling stability of LiNi0.8Co0.2O2. The favourable effect of LiCoO2-coating was connected with an enhanced stability of the bulk composition and reduction of electrode/electrolyte interaction.  相似文献   

4.
LiCoO2 was surface modified by a coprecipitation method followed by a high-temperature treatment in air. FePO4-coated LiCoO2 was characterized with various techniques such as X-ray diffraction (XRD), auger electron spectroscopy (AES), field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS), 3 C overcharge and hot-box safety experiments. For the 14500R-type cell, under a high charge cutoff voltage of 4.3 and 4.4 V, 3 wt.% FePO4-coated LiCoO2 exhibits good electrochemical properties with initial discharge specific capacities of 146 and 155 mAh g−1 and capacity retention ratios of 88.7 and 82.5% after 400 cycles, respectively. Moreover, the anti-overcharge and thermal safety performance of LiCoO2 is greatly enhanced. These improvements are attributed to the FePO4 coating layer that hinders interaction between LiCoO2 and electrolyte and stabilizes the structure of LiCoO2. The FePO4-coated LiCoO2 could be a high performance cathode material for lithium-ion battery.  相似文献   

5.
LiCoO2 is the most famous positive electrode (cathode) for lithium ion cells. When LiCoO2 is charged at high charge voltages far from 4.2 V, cycleability of LiCoO2 becomes worse. Causes for this deterioration are instability of pure LiCoO2 crystalline structure and an oxidation of electrolyte solutions LiCoO2 at higher charge voltages. This electrolyte oxidation accompanies with the partial reduction of LiCoO2. We think more important factor is the oxidation of electrolyte solutions. In this work, influence of 10 organic compounds on electrochemical and thermal properties of LiCoO2 cells was examined as electrolyte additives. As a base electrolyte solution, 1 M (M: mol L−1) LiPF6-ethylene carbonate (EC)/ethylmethyl carbonate (EMC) (mixing volume ratio = 3:7) was used. These compounds are o-terphenyl (o-TP), Ph-X (CH3)n (n = 1 or 2, X = N, O or S) compounds, adamantyl toluene compounds, furans and thiophenes. These additives had the oxidation potentials (Eox) between 3.4 and 4.7 V vs. Li/Li+. These Eox values were lower than that (6.30 V vs. Li/Li+) of the base electrolyte. These additives are oxidized on LiCoO2 during charge of the LiCoO2 cells. Oxidation products suppress the excess oxidation of electrolyte solutions on LiCoO2. As a typical example of these organic compounds, o-TP (Eox: 4.52 V) was used to check the fundamental properties of these organic additives. Charge-discharge cycling tests were carried out for the Li/LiCoO2 cells with and without o-TP. Constant current charge at 4.5 V is mainly used as a charge method. Cells with 0.1 wt.% o-TP exhibited slightly better cycling performance and lower polarization than those without additives. Lower polarization arises from a decrease in a resistance of interface between electrolyte solutions and LiCoO2 by surface film formation resulted from oxidation of o-TP. Oxidation products were found by mass spectroscopy analysis to be mixture of several polycondensation compounds made from two to four terphenly monomers. Thermal stability of LiCoO2 with electrolyte solutions did not improve by addition of o-TP. Slightly better charge-discharge cycling properties were obtained by using organic modifiers. However, when industrial applications were considered, drastic improvements have not been obtained yet. One of reasons may be too large influence of the deterioration of stability of pure LiCoO2 structure at high voltage charging for industrial use. We hope to realize the tremendous improvements of high energy, long cycle life and safe lithium cells by the combination of both LiCoO2 with more stable structure such as LiCoO2 treated with MgO and new organic additives with molecular structure more carefully designed.  相似文献   

6.
Electrochemical oxidation behavior of non-aqueous electrolytes on LiCoO2 thin film electrodes were investigated by in situ polarization modulation Fourier transform infrared (PM-FTIR) spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). LiCoO2 thin film electrode on gold substrate was prepared by rf-sputtering method. In situ PM-FTIR spectra were obtained at various electrode potentials during cyclic voltammetry measurement between 3.5 V vs. Li/Li+ and 4.2 V vs. Li/Li+. During anodic polarization, oxidation of non-aqueous electrolyte was observed, and oxidized products remained on the electrode at the potential higher than 3.75 V vs. Li/Li+ as a surface film. During cathodic polarization, the stripping of the surface film was observed at the potential lower than 3.9 V vs. Li/Li+. Depth profile of XPS also showed that more organic surface film remained on charged LiCoO2 than that on discharged one. AFM images of charged and discharged electrodes showed that some decomposed products deposited on charged electrode and disappeared from the surface of discharged one. These results indicate that the surface film on LiCoO2 is not so stable.  相似文献   

7.
Nano-sized platinum and ruthenium dispersed on the surface LiCoO2 as catalysts for borohydride hydrolysis are prepared by microwave-assisted polyol process. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Very uniform Pt and Ru nanoparticles with sizes of <10 nm are dispersed on the surface of LiCoO2. XRD patterns show that the Pt/LiCoO2 and Ru/LiCoO2 catalysts only display the characteristic diffraction peaks of a LiCoO2 crystal structure. Results obtained from XPS analysis reveal that the Pt/LiCoO2 and Ru/LiCoO2 catalysts contain mostly Pt(0) and Ru(0), with traces of Pt(IV) and Ru(IV), respectively. The hydrogen generation rates using low noble metal loading catalysts, 1 wt.% Pt/LiCoO2 and 1 wt.% Ru/LiCoO2, are very high. The hydrogen generation rate using Ru/LiCoO2 as a catalyst is slightly higher compared with that of Pt/LiCoO2.  相似文献   

8.
As a sequence work to investigate the performance-degradation mechanism of an aged commercial laminated lithium-ion cell experiencing 4350-cycle charge–discharge in a simulated low-Earth-orbit (LEO) satellite operation, we performed the surface characterization of LiCoO2 cathode and graphite anode by Fourier transform infrared-Attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis in this work. Overall, the graphite anode had a larger change in surface chemistry than that of the LiCoO2 cathode. Except the common surface components, we detected Co metal at the aged graphite surface in the first time. This Co metal deposition was believed to originate from Co2+ dissolution from LiCoO2 cathode during prolonged cycling, and detrimental to structure stability of LiCoO2 cathode which was a main cause of cell capacity loss. The amount of surface-film component was also estimated by FTIR analysis. Though the total amount of surface film increased, the organic (inorganic) surface film decreased (increased) with prolonged cycling.  相似文献   

9.
Thermal reactions between cathode particles (LiNi0.8Co0.2O2, LiCoO2, LiMn2O4 and LiFePO4) and ternary electrolyte (1.0 M LiPF6 in 1:1:1 diethyl carbonate/dimethyl carbonate/ethylene carbonate) with or without the thermal stabilizing additive dimethyl acetamide (DMAc) have been investigated. Ternary electrolyte reacts with the surface of lithiated metal oxides (LiNi0.8Co0.2O2, LiCoO2 and LiMn2O4) upon storage to corrode the surface and generate a complex mixture of organic and inorganic surface species, but the bulk ternary electrolyte does not decompose. There is little evidence for reaction between the surface of carbon coated LiFePO4 and ternary electrolyte upon storage at elevated temperature (>60 °C), but the bulk ternary electrolyte decomposes. Addition of DMAc to ternary electrolyte reduces the surface corrosion of the lithiated metal oxides and stabilizes the electrolyte in the presence of LiFePO4.  相似文献   

10.
《Journal of power sources》2006,162(2):1363-1366
To enhance the thermal stability of LiCoO2 in lithium ion batteries, 4-isopropyl phenyl diphenyl phosphate (IPPP) was investigated as an additive in 1.0 M LiPF6/EC + DEC (1:1 wt.%) electrolyte. The thermodynamics and kinetics parameters of the single LiCoO2 and LixCoO2–IPPP-electrolyte are detected and calculated based on the C80 microcalorimeter data. The results indicated that IPPP can enhance the thermal stability of LiCoO2 electrode in lithium ion battery more or less corresponding to the IPPP content in electrolyte. Furthermore, the electrochemical performances of LiCoO2/IPPP-electrolyte/Li cells become slightly worse after using IPPP additive in the electrolyte. This alleviated trade-off between thermal stability and cell performance provides a possibility to formulate an electrolyte containing 5–10% of IPPP and enhance the LiCoO2 electrode thermal stability with minimum sacrifice in performance.  相似文献   

11.
《Journal of power sources》2002,112(1):109-115
Layers of LiCoO2 were formed on the internal surface of a porous NiO cathode to reduce the rate of NiO dissolution into the molten carbonate. A sol-impregnation technique assisted by acrylic acid (AA) was used to deposit gel precursors of LiCoO2 on the pore surface of the Ni plate. Thermal treatment of the gel-coated cathode above 400 °C produced LiCoO2 layers on the porous cathode. A number of bench-scale single cells were fabricated with LiCoO2-coated cathodes and the cell performance was examined at atmospheric pressure for 1000 h. With the increase in the LiCoO2 content in the cathode, the initial cell voltage decreased, but the cell performance gradually improved during the cell test. It was found from symmetric cathode cell test that the cathode was initially flooded with electrolyte, but redistribution of the electrolyte took place during the test and cell performance became comparable to that of a conventional NiO cathode. The amount of Ni precipitated in the matrix during the cell operation for 1000 h was significantly reduced by the LiCoO2 coating. For instance, coating 5 mol% of LiCoO2 in the cathode led to a 56% reduction of Ni precipitation in the matrix. The results obtained in this study strongly suggest that LiCoO2 layers formed on the internal surface of the porous NiO cathode effectively suppress the rate of NiO dissolution for 1000 h.  相似文献   

12.
We fabricated all-solid-state lithium secondary batteries consisting of LiCoO2 thin films prepared by electron cyclotron resonance (ECR) sputtering LiPON and metallic lithium films, and investigated the influence of the sputtering target composition on the performance of the batteries and LiCoO2 films. We found that the LiCoO2 film sputtered with a stoichiometric LiCoO2 target included many impurities (mainly Co3O4) and these impurities were eliminated by adding an excess of Li source to the sputtering target to achieve a Li/Co atomic ratio of 2.0 elsewhere. The LiCoO2 film sputtered with a Li2.0 target exhibited a larger discharge capacity and a high performance level for large current operation. However, the capacity of a battery employing LiCoO2 film sputtered with a Li2.0 target decreased more rapidly than that with a Li1.0 or Li1.7 target in a charge–discharge cycle test. We also investigated the cycle performance of LiCoO2 films in an ordinary liquid electrolyte by using beaker type cells. We found that the decrease in capacity during the cycle tests was caused by the deterioration of the LiCoO2 film, because the dependence of the target composition on the cycle performance in the beaker type cells was similar to that in the all-solid-state cells. We consider the capacity decrease to be caused by the deterioration in the crystallinity of the LiCoO2 film when using the Li2.0 target and caused by the formation of a Co3O4 layer on the surface of the LiCoO2 film when using a Li1.7 target on basis of the results of X-ray diffraction analysis and Raman spectroscopy.  相似文献   

13.
A lithium phosphorus oxynitride (LiPON) glass-electrolyte thin film is coated on a lithium cobalt oxide (LiCoO2) composite cathode by means of a radio frequency (RF) magnetron sputtering method. The effect of the LiPON coating layer on the electrochemical performance and thermal stability of the LiCoO2 cathode is investigated. The thermal stability of the delithiated LiCoO2 cathode in the presence of liquid electrolyte is examined by differential scanning calorimetry (DSC). It is found that the LiPON coating, improves the rate capability and the thermal stability of the charged LiCoO2 cathode. The LiPON film appears to suppress impedance growth during cycling and inhibits side-reactions between delithiated LiCoO2 and the electrolyte.  相似文献   

14.
Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, w/w/w) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, w/w/w) under a current density of 0.075 mA cm−2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, v/v/v) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge-discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that the decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.  相似文献   

15.
In this study, the mechanism of enhanced performance of ZrO2-coated LiCoO2 especially at high potential range is systematically investigated. Firstly, when overcharging to 4.5 V (higher than 4.2 V, the normal cutoff charging potential), phase transformation from H1 to H2 takes place with less volume expansion for ZrO2-coated LiCoO2 (1.2% and 2.2% for as-received one). EIS analysis indicates the growth of interfacial impedance during charging/discharging can be effectively suppressed with ZrO2 coating on the LiCoO2 surface. It is demonstrated as well that cation mixing of the cycled LiCoO2 caused by re-intercalation of dissolved Co2+ is inhibited with the ZrO2 coating on the LiCoO2. Therefore the ZrO2-coated LiCoO2 shows great enhancement in the electrochemical properties with 85% capacity retention after 30 cycles from 3 to 4.5 V at a rate of 0.5C. Nevertheless, under the same evaluation process, the as-received LiCoO2 possesses only 21% capacity retention, which is resulted from the formation of polymeric layers by the electrolyte decomposition on its surface, the higher volumetric changes during charging/discharging and possible cation mixing by re-intercalation of the dissolved Co2+.  相似文献   

16.
Electrode-electrolyte composite materials were prepared by coating a highly conductive Li2S-P2S5 solid electrolyte onto LiCoO2 electrode particles using pulsed laser deposition (PLD). Cross-sections of the composite electrode layers of the all-solid-state cells were observed using a transmission electron microscope to investigate the packing morphology of the LiCoO2 particles and the distribution of solid electrolyte in the composite electrode. All-solid-state cells based on a composite electrode composed entirely of solid-electrolyte-coated LiCoO2 were fabricated, and their performance was investigated. The coating amounts of Li2S-P2S5 solid electrolytes on LiCoO2 particles and the conductivity of the coating material were controlled to increase the capacity of the resulting all-solid-state cells. All-solid-state cells using LiCoO2 with thick solid electrolyte coatings, grown over 120 min, had a capacity of 65 mAh g−1, without any addition of Li2S-P2S5 solid electrolyte particles to the composite electrode. The capacity of the all-solid-state cell increased further after increasing the conductivity of the Li2S-P2S5 solid electrolyte coating by heat treatment at 200 °C. Furthermore, an all-solid-state cell based on a composite electrode using both a solid electrolyte coating and added solid electrolyte particles was fabricated, and the capacity of the resulting all-solid-state cell increased to 95 mAh g−1.  相似文献   

17.
It has been demonstrated that LiCoO2 is a very attractive cathode active material for lithium rechargeable cells. Poly(acrylonitrile) (PAN)-based polymer electrolyte is used for Li/LiCoO2 cells. PAN-based polymer electrolyte shows ionic conductivity of the order 1 mS cm−1 at room temperature, irrespective of time evolution, and wide electrochemical stability up to 4.3 V (versus Li+/Li). An LiCoO2 composite cathode containing 4 wt.% conductive material displays a good cycling performance. From a.c. impedance results, the interfacial resistance of Li/LiCoO2 cells is dominated by the passive layer formed at the lithium/polymer electrolyte interface.  相似文献   

18.
《Journal of power sources》2006,163(1):185-190
Synchrotron based in situ X-ray diffraction was used to study the structural changes of a ZrO2-coated LiCoO2 cathode in comparison with the uncoated sample during multi-cycling in a wider voltage window from 2.5 to 4.8 V. It was found that the improved cycling performance of ZrO2-coated LiCoO2 is closely related to the larger lattice parameter “c” variation range, which is an indicator of how far the structural change has proceeded towards the two end members of the phase transition stream during charge–discharge cycling. At fifth charge, the lattice parameter variation ranges for both uncoated and ZrO2-coated LiCoO2 were reduced compared with those for the first charge, reflecting the capacity fading caused by the high voltage cycling. However, this variation range reduction is smaller in ZrO2-coated LiCoO2 than that in the uncoated sample, and so is the capacity fading. These results point out an important direction for studying the fading mechanism and coating effects: the key issues are the surface protection, the interaction between the cathode surface and the electrolyte and the electrolyte decomposition. In order to improve the capacity retention during cycling, the variation range of lattice parameter “c” of LiCoO2 should be preserved, not reduced.  相似文献   

19.
The interfacial layer formed between a lithium-ion conducting solid electrolyte, Li7La3Zr2O12 (LLZ), and LiCoO2 during thin film deposition was characterized using a combination of microscopy and electrochemical measurement techniques. Cyclic voltammetry confirmed that lithium extraction occurs across the interface on the first cycle, although the nonsymmetrical redox peaks indicate poor electrochemical performance. Using analytical transmission electron microscopy, the reaction layer (∼50 nm) was analyzed. Energy dispersive X-ray spectroscopy revealed that the concentrations of some of the elements (Co, La, and Zr) varied gradually across the layer. Nano-beam electron diffraction of this layer revealed that the layer contained neither LiCoO2 nor LLZ, but some spots corresponded to the crystal structure of La2CoO4. It was also demonstrated that reaction phases due to mutual diffusion are easily formed between LLZ and LiCoO2 at the interface. The reaction layer formed during high temperature processing is likely one of the major reasons for the poor lithium insertion/extraction at LLZ/LiCoO2 interfaces.  相似文献   

20.
LiCoO2 thin films with different orientations were fabricated by pulsed laser deposition, and Li-ion transfer at the interface between the electrolyte and a LiCoO2 thin film electrode was investigated. This study particularly focused on the effect of orientation on Li-ion transfer. The thin films were shown to be highly crystallized by X-ray diffraction. Charge transfer resistance ascribed to Li-ion transfer at the interface was observed by ac impedance spectroscopy. While charge transfer resistance was strongly influenced by the preferred orientation of LiCoO2 thin film, the activation energy evaluated from the temperature-dependence of Li-ion transfer resistance appeared to be independent of the orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号