首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxides of composition SrMo1−xCrxO3−δ (x = 0.1, 0.2) have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers higher than 700 mW cm−2 at 850 °C with pure H2 as a fuel. All the materials are suggested to present mixed ionic–electronic conductivity (MIEC) from neutron powder diffraction (NPD) experiments, complemented with transport measurements; the presence of a Mo4+/Mo5+ mixed valence at room temperature, combined with a huge metal-like electronic conductivity, as high as 340 S cm−1 at T = 50 °C for x = 0.1, could make these oxides good materials for solid-oxide fuel cells. The magnitude of the electronic conductivity decreases with increasing Cr-doping content. The reversibility of the reduction–oxidation between the oxidized Sr(Mo,Cr)O4−δ scheelite and the reduced Sr(Mo,Cr)O3 perovskite phases was studied by thermogravimetric analysis, which exhibit the required cyclability for fuel cells. An adequate thermal expansion coefficient, without abrupt changes, and a chemical compatibility with electrolytes make these oxides good candidates for anodes in intermediate-temperature SOFC (IT-SOFCs).  相似文献   

2.
La-doped SrTiO3 (LST)–xCeO2 (x = 0, 30, 40, 50) composites were evaluated as anode materials for solid oxide fuel cells in terms of chemical compatibility, electrical conductivity and fuel cell performance in H2 and CH4. Although the conductivity of LST–xCeO2 composite slightly decreased from 4.6 to 3.9 S cm−1 in H2 at 900 °C as the content of CeO2 increased, the fuel cell performance improved from 75.8 to 172.3 mW cm−2 in H2 and 54.5 to 139.6 mW cm−2 in CH4 at 900 °C. Electrochemical impedance spectra (EIS) indicated that the addition of CeO2 into LST can significantly reduce the fuel cells polarization thus leading to a higher performance. The result demonstrated the potential ability of LST–xCeO2 to be used as SOFCs anode.  相似文献   

3.
The anode materials La0.3Sr0.7Ti1−xCrxO3−δ (LSTC, x = 0, 0.1, 0.2) with cubic structure were prepared via solid state reaction route. The influence of Cr content on the properties of LSTC as anode and interconnect materials for solid oxide fuel cells (SOFCs) was investigated. The Cr-doping decreased the lattice parameter while increased the sinterability of LSTC materials. The total electrical conductivity decreased with Cr doping level, from 230 S cm−1 for x = 0 to 53 S cm−1 for x = 0.2. The total electrical conductivity exhibited good stability and recoverability in alternative atmospheres of air and 5% H2/Ar, showing excellent redox stability. The cell testing showed that the anode performance of LSTC was enhanced somewhat by Cr doping. The present results indicated that the prepared La0.3Sr0.7Ti1−xCrxO3−δ can be potential anode and interconnect materials for SOFCs.  相似文献   

4.
Barium cerate exhibits high protonic conductivity, especially when doped by suitable trivalent ions. A possible approach to get the protonic conductor stable in the presence of CO2 with relatively high protonic conductivity is the preparation of solid solutions of BaCe1−xMexO3−δ (Me = Zr, Ti) doped simultaneously with acceptor ion. In this work selected properties of series of Ba(Ce0.95Ti0.05)1−yYyO3−δ (0 ≤ y ≤ 0.2) materials prepared by solid-state reaction method were investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM) and direct current (DC) electrical measurements, including open cell voltage (OCV) measurements of electrochemical cells were used as experimental techniques. Structural studies have shown materials crystallized in orthorhombic Pmcn phase with the solubility limit of Y in Ba(Ce0.95Ti0.05)1−yYyO3−δ higher than 20 at.%. The DC conductivity measurements accompanied by the potentiometric OCV measurements of solid state electrochemical cells in controlled gas atmospheres (containing H2, O2 and H2O) and temperatures (500-800 °C) allowed determination of total electrical conductivity and transference numbers of oxygen, protonic and electronic defects in prepared materials. The introduction of Y increases total electrical conductivity and transference numbers for protonic defects, which was correlated with structural changes.  相似文献   

5.
Pr2−xSrxNiO4 (PSNO, x = 0.3, 0.5 and 0.8) cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC) were synthesized by a glycine-nitrate process using Pr6O11, Ni(NO3)2·6H2O and SrCO3 powders as raw materials. Phase structure of the synthesized powders was characterized by X-ray diffraction analysis (XRD). Microstructure of the sintered PSNO samples was observed and thermal expansion coefficient (TEC) and electrical conductivity were investigated. Electrochemical impedance spectroscopy (EIS) measurement of the PSNO materials on Sm0.2Ce0.8O1.9 (SCO) electrolyte was carried out, and single cells based on the PSNO cathodes were also assembled and their performances were tested. The results show that the synthesized PSNO powders have pure K2NiF4-type structure and the PSNO materials are chemically stable with Sm0.2Ce0.8O1.9 (SCO) electrolyte. The sintered PSNO samples have porous and fine microstructure with pore size smaller than 1 μm. Average thermal expansion coefficient of the PSNO materials is about 12–13 × 10−6 K−1 at 200–800 °C and the electrical conductivity is in the range of 70–120 Scm−1 at 800 °C. Area specific resistance (ASR) of the Pr2−xSrxNiO4 materials on SCO electrolyte is 0.407 Ωcm2, 0.126 Ωcm2 and 0.112 Ωcm2 for x = 0.3, 0.5 and 0.8 at 800 °C, respectively. Maximum open circuit voltage (OCV) and power density of the single NiO-SCO/SCO/PSNO cells are 0.75 V and 298 mWcm−2 at 700 °C, respectively, which indicates that Pr2−xSrxNiO4 may be a potential cathode material for IT-SOFC.  相似文献   

6.
Composites formed by the infiltration of 40 wt% La0.8Sr0.2ScxMn1−xO3-δ (LSSM) oxides (x = 0.1, 0.2, 0.3) into 65% porous yttria-stabilized zirconia (YSZ) are investigated as anode materials for intermediate-temperature solid oxide fuel cells for hydrocarbon oxidation. The oxygen non-stoichiometry and electrical conductivity of each LSSM-YSZ composite are determined by coulometric titration. As the concentration of Sc increases, the composites show higher phase stability and the electrical conductivity of LSSM is significantly affected by the Sc doping, the non-stoichiometric oxygen content, and oxygen partial pressure (p(O2)). To achieve better electrochemical performance, it is necessary to add ceria-supported palladium catalyst for operation with humidified CH4. Anode polarization resistance increases with Sc doping due to a decrease in electrical conductivity. An electrolyte-supported cell with a LSSM-YSZ composite anode delivers peak power densities of 395 and 340 mW cm−2 at 923 K in humidified (3% H2O) H2 and CH4, respectively, at a flow rate of 20 mL min−1.  相似文献   

7.
Iron doped layered structured perovskites, PrBaCo2−xFexO5+δ (x = 0, 0.5, 1.0, 1.5 and 2.0), are evaluated as cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The effects of dopant content are investigated on their structural and electrochemical properties including crystalline structure, oxygen nonstoichiometry, stability in presence of CO2, compatibility with electrolytes, thermal expansion coefficient, electrical conductivity, and cathodic interfacial polarization resistance. The lattice parameter and oxygen nonstoichiometry content, δ, at room temperature increase, whereas the conductivity, thermal expansion coefficient, and cathodic performance decrease with increasing iron content, x. PrBaCo2−xFexO5+δ exhibit excellent stability at 700 °C in atmosphere consisting of 3% CO2 and 97% air, show good chemical compatibility with doped ceria electrolytes at 1000 °C, but react readily with yttria-stabilized zirconia at 700 °C. Even with a Co-free PrBaFe2O5+δ as the electrode, a symmetrical cell demonstrates area specific resistance of 0.18 Ω cm2 at 700 °C with samaria-doped ceria electrolyte. The resistance is lower than those for typical Co-free electrodes reported in the literatures, suggesting that PrBaCo2−xFexO5+δ are potential promising cathode materials for IT-SOFCs.  相似文献   

8.
BaIn0.3Ti0.7O2.85 (BIT07) is a suitable electrolyte for Solid Oxide Fuel Cell (SOFC) but half cells based on La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) as a cathode material show a degradation of the Area Specific Resistance (ASR) at 700 °C with time. This study deals with the characterization of alternative cathode materials showing a better compatibility with BIT07 than LSCF. A new solid solution, BaxLa0.58(1−x)Sr0.4(1−x)In0.3xTi0.7xCo0.2(1−x)Fe0.8(1−x)O3−δ, with 0 ≤ x ≤ 1, also called BLSITCFx, with in this case x expressed in molar %, derived from BIT07 and LSCF, has been synthesized at 1350 °C in air using BIT07 and LSCF powders. Two compositions, BLSITCF12 and BLSITCF25, have been selected due to their thermal expansion and conductivity properties. Symmetrical half cells based on these two new materials deposited on BIT07 electrolyte have been studied by complex impedance spectroscopy in air versus temperature and time. Their behaviour is comparable to LSCF's, with ASR values never exceeding 0.2 Ωcm2 at 700 °C, and moreover their less important Thermal Expansion Coefficient (TEC) mismatch with BIT07 lead to a better mechanical compatibility with time. These new compounds are therefore better candidates than LSCF as cathode materials for SOFC based on BIT07 electrolyte.  相似文献   

9.
A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ ((BS)1−xCF) oxides were synthesized and evaluated as cathode materials for intermediate-temperature solid-oxide fuel cells (ITSOFCs). The material's thermal expansion coefficient, electrical conductivity, oxygen desorption property, and electrocatalytic activity were measured. A decrease in both the electronic conductivity and the thermal expansion coefficient was observed for increasing values of the stoichiometric coefficient, x. This effect was attributed to the creation of additional oxygen vacancies, the suppression of variation in the oxidation states of cobalt and iron, and the suppression of the spin-state transitions of cobalt ions. The increase in A-site cation deficiency resulted in a steady increase in cathode polarization resistance, because impurities formed at the cathode/electrolyte interface, reducing the electronic conductivity. A single SOFC equipped with a BS0.97CF cathode exhibited peak power densities of 694 and 893 mW cm−2 at 600 and 650 °C, respectively, and these results were comparable with those obtained with a Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode. Slightly A-site cation-deficient (BS)1−xCF oxides were still highly promising cathodes for reduced temperature SOFCs.  相似文献   

10.
Perovskite-type La1−xSrxNiyFe1−yO3−δ (x = 0.3, 0.4, 0.5, 0.6, y = 0.2; x = 0.3, y = 0.2, 0.3, 0.4) oxides have been synthesized and employed as cathodes for low-temperature solid oxide fuel cells (SOFCs) with composite electrolyte. The segregation of La2NiOδ is observed to increase with the increasing Sr2+ incorporation content according to X-ray diffraction (XRD) results. The as-prepared powders appear porous foam-like agglomeration with particle size less than 1 μm. Maximum power densities yield as high as 725 mW cm−2 and 671 mW cm−2 at 600 °C for fuel cells with the LSNF4628 and LSNF7337 composite cathodes. The maximum power densities continuously increase with the increasing Sr2+ content in LSNF cathodes, which can be mainly ascribed to the possible charge compensating mechanism. The maximum power densities first increase with the Ni ion incorporation content up to y = 0.3 due to the increased oxygen vacancy, ionic conductivity and oxygen permeability. Further increase in Ni ion content results in a further lowering of fuel cell performance, which can be explained by the association of oxygen vacancies and divalent B-site cations in the cathode.  相似文献   

11.
Zinc-doped barium strontium cobalt ferrite (Ba0.5Sr0.5Co0.2−xZnxFe0.8O3−δ (BSCZF), x = 0, 0.05, 0.1, 0.15, 0.2) powders with various proportions of zinc were prepared using the ethylenediamine tetraacetic acid (EDTA)-citrate method with repeated ball-milling and calcining. They were then evaluated as cathode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFCs) using XRD, H2-TPR, SEM, and electrochemical tests. By varying the zinc doping (x) from zero to 0.2 (as a substitution for cobalt which ranged from zero to 100%), it was found that the lowest doping of 0.05 (BSCZF05) resulted in the highest electrical conductivity of 30.7 S cm−1 at 500 °C. The polarization resistances of BSCZF05 sintered at 950 °C were 0.15 Ω cm2, 0.28 Ω cm2 and 0.59 Ω cm2 at 700 °C, 650 °C and 600 °C, respectively. The resistance decreased further by about 30% when Sm0.2Ce0.8O2−δ (SDC) electrolyte particles were incorporated and the sintering temperature was increased to 1000 °C. Compared to BSCF without zinc, BSCZF experienced the lowest decrease in electrochemical properties when the sintering temperature was increased from 950 °C to 1000 °C. This decrease was due to an increase in thermal stability and a minimization in the loss of some cobalt cations without a decrease in the electrical conductivity. Using a composite cathode of BSCZF05 and 30 wt.% of SDC, button cells composed of an Ni-SDC support with a 30 μm dense SDC membrane exhibited a maximum power density of 605 mW cm−2 at 700 °C.  相似文献   

12.
The effect of temperature and complex dopant composition on oxygen ion conductivity in solid oxide electrolyte fuel cells was investigated by atomistic molecular dynamics simulation. A new electrolyte (Nd2−xGdxZr2O7) was selected to study oxygen ion conductivity using three Gd compositions (x = 0.8, 1.0, and 1.2) in a wide range of temperature (T = 1273 K–1873 K). MSD results of cations showed these groups of electrolyte are stable at high operating temperature. The first composition (x = 0.8) had the highest ionic conductivity that was in good agreement with the experimental data. A simple effective model that works with configuration energy of the oxygen crossing plate was applied to explain the observed conductivity trend. The model illustrated the point as well. Increasing Gd concentration decreases existence probability of easy crossing plate. Radial distribution function analysis also confirmed results. Thermal expansion of the electrolyte has a major effect on the selecting of the electrolyte materials; thus, this important factor was also studied. Results showed the first composition had the greatest thermal expansion.  相似文献   

13.
Cation ordered perovskites have been recognized as advanced cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). This study focuses on the effects of Sr substitution on crystal characteristics, electrical properties, and electrochemical performance of SmBa1−xSrxCo2O5+δ (x = 0, 0.25, 0.5, 0.75, and 1.0) as an IT-SOFC cathode material. The electrical conductivity improves with increasing Sr content due to the greater amount of electronic holes originated from the increased interstitial oxygen. The area specific resistances (ASRs) of SmBa1−xSrxCo2O5+δ decrease with Sr content up to x = 0.75 and increase abruptly for x = 1. For x = 0.75, the lowest ASR value, 0.138 Ω cm2, and the highest single cell performance, 1.039 W cm−2 at 600 °C, are obtained. These results indicate that SmBa1−xSrxCo2O5+δ is optimized at x = 0.75 in terms of obtaining the best performance for IT-SOFCs.  相似文献   

14.
Series of SrCe1−xYxO3−δ solid solutions with x varying between 0 and 0.2 were prepared by solid-state reaction method. XRD results revealed that samples with 0 ≤ x < 0.1 (SrCe1−xYxO3−δ) are homogenous perovskite phases, while the samples with higher concentration of yttrium contain admixture of other phase (identified as Sr2CeO4). According to SEM observations the samples were dense with uniform grain sizes within 3–5 μm. Impedance spectroscopic investigations revealed a strong influence of Y concentration on electrical properties of SrCe1−xYxO3−δ. The activation energies of the total electrical conductivity as well as grain boundary and bulk components have been determined. Mixed ionic-electronic conductivity in studied materials at experimental conditions has been observed. Potentiometric measurements of EMF versus temperature of solid cells containing studied materials as solid electrolytes were performed in order to determine ionic transference numbers versus temperature.  相似文献   

15.
The SrTixCo1−xO3−δ (STC, x = 0.05, 0.1, 0.15, 0.2) perovskite-type oxides synthesized by the polymerized complex (PC) method have been investigated as cathode materials for low-temperature solid oxide fuel cells (SOFCs) with composite electrolyte for the first time. Thermogravimetry-differential thermal analysis (TG-DTA) shows the crystallization of SrTi0.1Co0.9O3−δ occurs at 780 °C. The oxides have been stabilized to be a cubic perovskite phase after the B-site is doped with Ti ion. The maximum power density reaches as high as 613 mW cm−2 at 600 °C for SOFC with SrTi0.2Co0.8O3−δ cathode. The maximum power densities increase with the increasing Ti content in the cathode, which can be attributed to the enhancement of conductivity and electrocatalytic activity. The stability of the fuel cell with SrTi0.1Co0.9O3−δ cathode has been examined for 18 h at 600 °C. Only a slight decline in the cell performance can be observed with increasing time. The high performance cathodes together with the low-cost fabrication technology are highly encouraging for development of low-temperature SOFCs.  相似文献   

16.
Direct borohydride fuel cells (DBFCs), with a series of perovskite-type oxides La1−xSrxCoO3 (x = 0.1-0.5) as the cathode catalysts and a hydrogen storage alloy as the anode catalyst, are studied in this paper. The structures of the perovskite-type catalysts are mainly La1−xSrxCoO3 (x = 0.1-0.5) oxides phases. However, with the increase of strontium content, the intensities of the X-ray diffraction peaks of the impure phases La2Sr2O5 and SrLaCoO4 are gradually enhanced. Without using any precious metals or expensive ion exchange membranes, a maximum current density of 275 mA cm−2 and a power density of 109 mW cm−2 are obtained with the Sr content of x = 0.2 at 60 °C for this novel type of fuel cell.  相似文献   

17.
Pr1−xYxBaCo2O5+δ (x = 0.3, 0.5 and 0.7) oxides were prepared and evaluated as cathode materials for intermediate-temperature solid oxide fuel cells. The effect of Y-doping on the crystal structure, oxygen vacancy concentration, thermal expansion coefficient (TEC), electrical conductivity and cathode performance of Pr1−xYxBaCo2O5+δ was investigated. These properties were compared with that of GdBaCo2O5+δ having a middle element of lanthanides. Pr1−xYxBaCo2O5+δ shows TEC (∼17.6 × 10−6 K−1) lower than that of undoped PrBaCo2O5+δ, but similar to the one for GdBaCo2O5+δ. Y-doping causes a decrease in electrical conductivity, but at the same time induces an increase in oxygen vacancy concentration. With increasing Y-doping level, the area specific resistance (ASR) of Pr1−xYxBaCo2O5+δ-based electrode in a symmetrical cell increases, and correspondingly, the peak power density of single-cell decreases slightly. Nevertheless, comparing to GdBaCo2O5+δ-based electrode, Pr1−xYxBaCo2O5+δ (x = 0.3–0.7) exhibits significantly lower ASR, and allows to obtain cells with higher maximum power density.  相似文献   

18.
(Ba0.5Sr0.5)(Fe1-xAlx)O3-δ (BSFAx, x = 0–0.2) oxides have been synthesized as novel cobalt-free cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) using a sol-gel method. The BSFAx (x = 0–0.2) materials have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivities and electrochemical properties of the prepared samples have also been measured. At 800 °C, the conductivity drops from 15 S cm−1 to 5 S cm−1 when the doping level of aluminum is increased to 20%. The aluminum-doping concentration has important impacts on the electrochemical properties of BSFAx materials. The BSFA0.09 cathode shows a significantly lower polarization resistance (0.26 Ω cm2) and cathodic overpotential value (55 mV at the current density of 0.1 A cm−2) at 800 °C. Furthermore, an anode-supported single cell with BSFA0.09 cathode has been fabricated and operated at a temperature range from 650 to 800 °C with humidified hydrogen (∼3vol% H2O) as the fuel and the static air as the oxidant. A maximum power density of 676 mWcm−2 has been achieved at 800 °C for the single cell. We believe that BSFA0.09 is a promising cathode material for future IT-SOFCs application.  相似文献   

19.
A novel series of mixed ion conductors, Sn1−xScxP2O7 (x = 0.03, 0.06, 0.09, 0.12), were synthesized by a solid-state reaction method. The conduction behaviors of the ion conductors in wet hydrogen atmosphere were investigated by some electrochemical methods including AC impedance spectroscopy, gas concentration cells in the temperature range of 323-523 K. It was found that the doping limit of Sc3+ in SnP2O7 was between 9 mol% and 12 mol%. The highest conductivity was observed to be 2.76 × 10−2 S cm−1 for the sample of x = 0.06 under wet H2 atmosphere at 473 K. The ionic conduction was contributed mainly to proton and partially to oxide ion in wet hydrogen atmosphere from 373 K to 523 K. The H2/air fuel cells using Sn1−xScxP2O7 (x = 0.03, 0.06, 0.09) as electrolytes (1.7 mm in thickness) generated the maximum power densities of 11.16 mW cm−2 for x = 0.03, 25.02 mW cm−2 for x = 0.06 and 14.34 mW cm−2 for x = 0.09 at 423 K, respectively. The results indicated that Sn1−xScxP2O7 is a promising solid electrolyte system for intermediate temperature fuel cells.  相似文献   

20.
Trimetallic alloys of Ni0.6Cu0.4−xZnx (x = 0, 0.1, 0.2, 0.3, 0.4) have been investigated as promising anode materials for low temperature solid oxide fuel cells (SOFCs) with composite electrolyte. The alloys have been obtained by reduction of Ni0.6Cu0.4−xZnxO oxides, which are synthesized by using the glycine–nitrate process. Increasing the Zn content x decreases the particle sizes of the oxides at a given sintering temperature. Fuel cells have been constructed using lithiated NiO as cathode and as-prepared alloys as anodes based on the composite electrolyte. Peak power densities are observed to increase with the increasing Zn addition concentration into the anode. The maximum power density of 624 mW cm−2 at 600 °C, 375 mW cm−2 at 500 °C has been achieved for the fuel cell equipped with Ni0.6Zn0.4 anode. A.c. impedance results show that the resistances dramatically decrease with increasing temperatures under open circuit voltage state. Both cathodic and anodic interfacial polarization resistances increase with the amplitude of applied DC voltage. Possible reaction process for H2 oxidation reaction at anode based on composite electrolyte has been proposed for the first time. The stability of the fuel cell with Ni0.6Cu0.2Zn0.2 composite anode has been investigated. The results indicate that the trimetallic Ni0.6Cu0.4−xZnx anodes are considerable for low temperature SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号