首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Olivine LiFePO4 particles were prepared by solid-state reaction using Li2CO3, (NH4)2HPO4 and FeC2O42H2O as raw materials, and they were coated with an appropriate amount of carbon through thermal decomposition of C16H10 pyrene. Cathodes using the olivine particles were subjected to an open-circuit voltage measurement under the relaxation condition of 24 h at each SOC and DOD states. The electrochemical reaction in the LiFePO4 cathode was composed of a large plateau around 3.45 V with sloped regions nearby for both the fully charged and discharged states. It was found that the sloped region widths exhibited a hysteresis, that is, they depend on the direction of the redox reaction. Furthermore, both sloped regions became narrower when the operating temperature was raised from 30 °C to 60 °C. These facts implied that the obtained profiles were not in an equilibrium state with a quasi-OCV profile than the real one, and that the potential relaxation in the sloped regions took an extremely long time (more than 24 h).  相似文献   

2.
A nanostructured spinel LiMn2O4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O) and citric acid (C6H8O7·H2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn2O4 electrodes in 2 M Li2SO4, 1 M LiNO3, 5 M LiNO3 and 9 M LiNO3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn2O4 electrode in 5 M LiNO3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.  相似文献   

3.
We demonstrate, for the first time, a considerable electrochemical activity of two members of lithium transition element titanates: Li2FeTiO4 and Li2MnTiO4. Both materials consist of 10–20 nm particles embedded in a conductive carbon coating. We show that not the coating but the small particle size is decisive for materials’ activity. Li2FeTiO4 shows a stable reversible capacity of up to 123 mA hg−1 at C/20 and 60 °C which is 83% of the theoretical value for exchange of 1 electron (148 mA hg−1). Li2MnTiO4 could only be prepared in a nanosized form that contained about 30% of impurities. The capacity of the whole material (including impurities) is comparable to that of Li2FeTiO4 but the cycling stability is much poorer. In contrast to the Fe and Mn analogues, the third member of the titanate family, Li2NiTiO4, shows a good electrochemistry even when the particle size is much larger (about 100 nm). During initial cycles at C/10 and 60 °C, exchange of more than 1 electron per compound formula has been observed. The cycling stability at high temperatures, however, is poor.  相似文献   

4.
Starting from the aqueous solution of titanium(IV) oxalate complexes and controlling electrochemical conditions using a cyclic voltammetry (CV) method, the thin layers of TiO2 on platinum were obtained, which after additional heat treatment, at 450 °C, were still of amorphous nature. The amorphous state of the samples, containing an admixture of crystalline anatase, was confirmed by Raman spectroscopy and by a variety of electrochemical techniques. The new electrochemical procedure allows preparing the oxide with different morphologies. By the comparison with the peroxotitanium route, the oxalate precursor method offers the possibility of the synthesis of amorphous TiO2 at higher temperatures that is the essential key for the cycling stability of the oxide if one is used as an anode material in lithium ion batteries. The results from cycling voltammetry revealed that electrodeposited TiO2 reversibly and fast intercalates lithium ions due to its high internal surface area. Therefore, the nanostructural morphology facilitates lithium ion intercalation which was monitored and confirmed in all electrochemical testing. The specific capacity of the TiO2 approaches the value of 145 mAh g−1 at 8 C-rate in the best case. From the electrochemical impedance spectroscopy (EIS) measurements in connection with SEM investigations, it was concluded that Li+ diffusion is the finite space process and its rate is depending on the size of the crystallites building the oxide films. Evaluated values of the D-coefficients are of the order of 10−14 cm2 s−1.  相似文献   

5.
6.
LiFePO4 cathode materials with distinct particle sizes were prepared by a planetary ball-milling method. The effects of particle size on the morphology, thermal stability and electrochemical performance of LiFePO4 cathode materials were investigated. The ball-milling method decreased particle size, thereby reducing the length of diffusion and improving the reversibility of the lithium ion intercalation/deintercalation. It is worth noting that the small particle sample prepared using malonic acid as a carbon source achieved a high capacity of 161 mAh g−1 at a 0.1 C rate and had a very flat capacity curve during the early 50 cycles. However, the big particle samples (∼400 nm) decayed more dramatically in capacity than the small particle size samples (∼200 nm) at high current densities. The improvement in electrode performance was mainly due to the fine particles, the small size distribution, and the increase in electronic conductivity as a result of carbon coating. The structure and morphology of the ground LiFePO4 samples were characterized with XRD, FE-SEM, TEM, EDS, and DSC techniques.  相似文献   

7.
LiFePO4/C composite cathode material was prepared by carbothermal reduction method, which uses NH4H2PO4, Li2CO3 and cheap Fe2O3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO4 composites showed a high electrochemical capacity of 159.3 mAh g−1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.  相似文献   

8.
LiFePO4 as a cathode material for rechargeable lithium batteries was prepared by hydrothermal process at 170 °C under inert atmosphere. The starting materials were LiOH, FeSO4, and (NH4)2HPO4. The particle size of the obtained LiFePO4 was 0.5 μm. The electrochemical properties of LiFePO4 were characterized in a mixed solvent of ethylene carbonate and diethyl carbonate (1:1 in volume) containing 1.0 mol dm−3 LiClO4. The hydrothermally synthesized LiFePO4 exhibited a discharge capacity of 130 mA h g−1, which was smaller than theoretical capacity (170 mA h g−1). The annealing of LiFePO4 at 400 °C in argon atmosphere was effective in increasing the discharge capacity. The discharge capacity of the annealed LiFePO4 was 150 mA h g−1.  相似文献   

9.
Chemical lithiation with LiI in acetonitrile was performed for amorphous FePO4 synthesized from an equimolar aqueous suspension of iron powder and an aqueous solution of P2O5. An orthorhombic LiFePO4 olivine structure was obtained by annealing a chemically lithiated sample at 550 °C for 5 h in Ar atmosphere. The average particle size remained at approximately 250 nm even after annealing. The lithium content in the sample was quantitatively confirmed by Li atomic absorption analysis and 57Fe Mössbauer spectroscopy. While an amorphous FePO4/carbon composite cathode has a monotonously decreasing charge–discharge profile with a reversible capacity of more than 140 mAh g−1, the crystallized LiFePO4/carbon composite shows a 3.4 V plateau corresponding to a two-phase reaction. This means that the lithium in the chemically lithiated sample is electrochemically active. Both amorphous FePO4 and the chemically lithiated and annealed crystalline LiFePO4 cathode materials showed good cyclability (more than 140 mAh g−1 at the 40th cycle) and good discharge rate capability (more than 100 mAh g−1 at 5.0 mA cm−2). In addition, the fast-charge performance was found to be comparable to that with LiCoO2.  相似文献   

10.
The changes appearing for LiFePO4-C nano-composites exposed to atmosphere at 120 °C have been structurally and chemically examined by the use of TGA, XRD, XPS, Mössbauer, 7Li MAS NMR and electrochemical methods. The results conclude that a highly disordered phase resulting from the aging of LiFePO4 appears on the surface of the grains of the material, is assigned to a phosphate phase and can insert lithium around 2.6 V with poor reversibility. The essential role of water has been investigated and clearly demonstrated. Thus, the aging mechanism occurring in hot humid air is completely different from a simple oxidation as well as from the aging process observed above 150 °C and involves the incorporation of hydroxyl groups. In addition, Fe2O3 formation has not been observed for such an aging in mild conditions.  相似文献   

11.
Nowadays, research aims to produce H2 efficiently through modifying conventional processes by removing CO2 at high temperature (T ≥ 500 °C). The sorption enhanced reforming (SER) is an example of such a process where CO2 capture offers significant energy savings (≈23%). Besides, feedstock to this process may include different sources of biofuels. An essential part of this new reaction system is the use of a solid CO2 absorbent. Among absorbents stands lithium orthosilicate (Li4SiO4) for its high absorption capacity and thermal stability. Therefore, the present research aims to study and model the kinetics of CO2 absorption by Li4SiO4 in a temperature range of 550–650 °C. Results were consistent with a first order reaction dependence with respect to CO2 concentration. Apparent activation energy of the gas–solid reaction (22.5 kcal/mol) is approximately equal the intrinsic activation energy (28.6 kcal/mol), suggesting that the surface reaction resistance determines the overall reaction rate.  相似文献   

12.
With in situ micro-Raman measurements during the electrochemical reduction of WO3 thin films, the influence of the intercalated cation (H+/Li+) and an addition of water to the aprotic lithium electrolyte was investigated. The Raman spectra of lithium bronzes LixWO3 show two main results: (i) the intercalation of hydrogen can be clearly distinguished in situ from the intercalation of lithium with this technique and (ii) even with an addition of 500 ppm of water to the lithium electrolyte no hydrogen intercalation was observed.  相似文献   

13.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1.  相似文献   

14.
The effect of H2O on carbon-coated LiFePO4 particles was investigated by chemical analysis, structural analysis (X-ray diffraction, SEM, TEM), optical spectroscopy (FTIR, Raman) and magnetic measurements. Upon immersion in water, part of the product floats while the main part sinks. Both the floating and the sinking part have been analyzed. We find that the floating and sinking part only differ by the amount of carbon that partly detaches from the particles upon immersion in water. Exposure to H2O results in rapid attack, within minutes, of the surface layer of the particles, because the particles are no longer protected by carbon. The deterioration of the carbon coat is dependent on the synthesis process, either hydrothermal or solid-state reaction. In both cases, however, the carbon coat is permeable to water and fails to protect the surface of the LiFePO4 particles. The consequence is that this immersion results in the chemical attack of LiFePO4, but is restricted to the surface layer of the particles (few nanometers-thick). In case the particles are simply exposed to humid air, the carbon coat protects the particles more efficiently. In this case, the exposure to H2O mainly results in the delithiation of the surface layer, due to the hydrophilic nature of Li, and only the surface layer is affected, at least for a reasonable time of exposure to humid air (weeks). In addition, within this timescale, the surface layer can be chemically lithiated again, and the samples can be dried to remove the moisture, restoring the reversible electrochemical properties.  相似文献   

15.
Manganese nanoferrites (MnFe2O4) were synthesized via thermal decomposition method using metal organic precursors in organic solvent. The structural and optical properties of the nanoparticles were investigated using X-ray diffraction (XRD), Field emission gun scanning electron microscopy (FEG-SEM), Fourier transform infrared (FTIR) spectroscopy and Ultraviolet visible spectrophotometer (UV–Vis). Electrochemical performance of MnFe2O4 was evaluated using cyclic voltammetry (CV). The voltammograms were obtained using Pt as the working electrode within a potential range of ?0.5 to +0.5 V at a scan rate of 50 mVs?1. The electrochemical behavior of the nanoferrites were studied in different electrolytes such as acidic, basic and phosphate buffer (PBS). The CV profile clearly indicates that the capacitive behavior of nanoferrites changes with change in electrolyte media. The results obtained from this study will be useful for the further applications such as magnetic materials, semiconductors, sensors and energy storage devices.  相似文献   

16.
In this study, a solution method was employed to synthesize LiFePO4-based powders with Li3PO4 and Fe2P additives. The composition, crystalline structure, and morphology of the synthesized powders were investigated by using ICP-OES, XRD, TEM, and SEM, respectively. The electrochemical properties of the powders were investigated with cyclic voltammetric and capacity retention studies. The capacity retention studies were carried out with LiFePO4/Li cells and LiFePO4/MCMB cells comprised LiFePO4-based materials prepared at various temperatures from a stoichiometric precursor. Among all of the synthesized powders, the samples synthesized at 750 and 775 °C demonstrate the most promising cycling performance with C/10, C/5, C/2, and 1C rates. The sample synthesized at 775 °C shows initial discharge capacity of 155 mAh g−1 at 30 °C with C/10 rate. From the results of the cycling performance of LiFePO4/MCMB cells, it is found that 800 °C sample exhibited higher polarization growth rate than 700 °C sample, though it shows lower capacity fading rate than 700 °C sample. For Fe2P containing samples, the diffusion coefficient of Li+ ion increases with increasing amount of Fe2P, however, the sample synthesized at 900 °C shows much lower Li+ ion diffusion coefficient due to the hindrance of Fe2P layer on the surface of LiFePO4 particles.  相似文献   

17.
Thermal decomposition of (NH4)2SO4 in presence of Mn3O4   总被引:1,自引:0,他引:1  
The main objective of this work is to develop a hybrid water-splitting cycle that employs the photon component of sunlight for production of H2 and its thermal (i.e. IR) component for generating oxygen. In this paper, (NH4)2SO4 thermal decomposition in the presence of Mn3O4, as an oxygen evolving step, was systematically investigated using thermogravimetric/differential thermal analyses (TG/DTA), temperature programmed desorption (TPD) coupled with a mass spectrometer (MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) techniques. Furthermore, thermolysis of ammonium sulfate, (NH4)2SO4, in the presence of Mn3O4 was also investigated by conducting flow reactor experiments. The experimental results obtained indicate that at 200-450 °C, (NH4)2SO4 decomposes forming NH3 and H2O and sulfur trioxide that in the presence of manganese oxide react to form manganese sulfate, MnSO4. At still higher temperatures (800∼900 °C), MnSO4 further decomposed forming SO2 and O2.  相似文献   

18.
The structural properties of LiFePO4 prepared by the hydrothermal route and chemically delithiated have been studied using analytical electron microscopy and Raman spectroscopy. High-resolution transmission electron microscopy and selected area electron diffraction measurements indicate that the partially delithiated particles include LiFePO4 regions with cross-sections of finite size along the ac-plane, as a result of tilt grain boundary in the bc-plane, and dislocations in other directions. Only the boundary along the bc-plane is accompanied by a disorder over about 2 nm on each side of the boundary. The Raman spectrum shows the existence of both LiFePO4 and FePO4 phases in the shell of the particles at a delithiation degree of 50%, which invalidates the core–shell model. This result also invalidates the recent model according to which each particle would be single-domain, i.e. either a LiFePO4 particle or a FePO4 particle. On the other hand, our results, like prior ones, can be understood within the framework of a model similar to the spinodal decomposition of a two-phase system, which is discussed within the framework of morphogenesis of patterns in systems at equilibrium. Both end-members, however, are well crystallized, suggesting a recovery similar to that observed in superplastic alloys, with dynamics that are due to the motion of nucleation fronts and dislocations, and not due to a diffusion phenomenon associated with a concentration gradient.  相似文献   

19.
Layer Li[Ni0.4Co0.2Mn0.4]O2 and lithium excess spinel Li[Li0.1Al0.05Mn1.85]O4 were compared as positive electrode materials for high power lithium-ion batteries. Physical properties were examined by Rietveld refinement of X-ray diffraction pattern and scanning electron microscopic studies. From continuous charge and discharge tests at higher currents and different temperature environments using 3Ah class lithium-ion batteries, it was found that both materials presented plausible battery performances such as rate capability, cyclability at 60 °C at elevated temperature, and low temperature properties as well.  相似文献   

20.
The freeze-drying method is proposed as an effective synthesis process for the obtaining of LiFePO4/C composites. The citric acid is used as a complexing agent and carbon source. After the low temperature annealing, the freeze-dried solution leads to a homogeneous carbon covered LiFePO4 sample. The chemical characterization of the material included ICP and elemental analysis, infrared spectroscopy, X-ray diffraction, magnetic measurements and thermal analysis. SEM and TEM microscopies indicate an aggregate morphology with tiny particles of lithium iron phosphate inside a carbon matrix. Impedance spectroscopy showed a 8.0 × 10−7 S cm−1 conductivity value. Cyclic voltammetry graphics displayed the two peaks corresponding to the Fe(II)/Fe(III) reaction and demonstrated the good reversibility of the material. The specific capacity value obtained at C/40 rate was 164 mAh g−1, with a slight decrease on greater C-rates reaching 146 mAh g−1 at C/1. The capacity retention study has evidenced good properties, with retention over 97% of the maximum values in the first 50 cycles, which allows an effective performance of the freeze-dried sample as cathodic material in lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号