首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work consists of a tubular-shaped direct methanol fuel cell (DMFC) that is operated completely passively with methanol solution stored in a central fuel reservoir. The benefit of a tubular-shaped DMFC over a planar-shaped DMFC is the higher instantaneous volumetric power energy density (power/volume) associated with the larger active area provided by the tubular geometry. Membrane electrode assemblies (MEAs) with identical compositions were installed in both tubular and planar-shaped, passive DMFCs and tested with 1, 2, and 3 M methanol solutions at room temperature. The peak power density for the tubular DMFC was 19.0 mW cm−2 and 24.5 mW cm−2 while the peak power density for the planar DMFC was 20.0 mW cm−2 and 23.0 mW cm−2 with Nafion® 212 and 115 MEAs, respectively. Even though the performance of the fuel cell improved with each increase in methanol concentration, the fuel and energy efficiencies decreased for both the tubular and planar geometries due to increased methanol crossover. The tubular DMFC experienced higher methanol crossover potentially due to a higher static fluid pressure in the anode fuel reservoir (AFR) caused by the vertical orientation of the tubular fuel reservoir. The performance of the tubular DMFC in this work represents an 870% improvement in power density from the previous best, passive, tubular DMFC found in the literature.  相似文献   

2.
A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s−1 cm−2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s−1 cm−2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm−2 or 400 mA cm−2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.  相似文献   

3.
Sulfonated poly(ether ether ketone)s (SPEEKs) were substituted on a polymer main chain that had previously been prepared by sulfonation of poly(ether ether ketone)s in concentrated sulfuric acid for a specified time. The product was then blended with Nafion® to create composite membranes. The blended SPEEK-containing membranes featured flaky domains dispersed in the Nafion® matrix. These blends possessed a high thermal decomposition temperature. Additionally, owing to the more crystalline, the blended membranes had a lower water uptake compared to recast Nafion®, the methanol permeability was reduced to 1.70 × 10−6 to 9.09 × 10−7 cm2 s−1 for various SPEEK concentrations, and a maximum proton conductivity of ∼0.050 S cm−1 was observed at 30 °C. The single-cell performances of the Nafion®/SPEEK membranes, with various SPEEK concentrations and a certain degree of sulfonation, were 15–25 mW cm−2 for SPEEK53 and 19–27 mW cm−2 for SPEEK63, at 80 °C. The power density and open circuit voltage were higher than those of Nafion® 115 (power density = 22 mW cm−2). The blended membranes satisfy the requirements of proton exchange membranes for direct methanol fuel cell (DMFC) applications.  相似文献   

4.
Commercial Nafion®-115 (trademark registered to DuPont) membranes were modified by in situ polymerized phenol formaldehyde resin (PFR) to suppress methanol crossover, and SO3 groups were introduced to PFR by post-sulfonatation. A series of membranes with different sulfonated phenol formaldehyde resin (sPFR) loadings have been fabricated and investigated. SEM-EDX characterization shows that the PFR was well dispersed throughout the Nafion® membrane. The composite membranes have a similar or slightly lower proton conductivity compared with a native Nafion® membrane, but show a significant reduction in methanol crossover (the methanol permeability of sPFR/Nafion® composite membrane with 2.3 wt.% sPFR loading was 1.5 × 10−6 cm2 s−1, compared with the 2.5 × 10−6 cm2 s−1 for the native Nafion® membrane). In direct methanol fuel cell (DMFC) evaluation, the membrane electrode assembly (MEA) using a composite membrane with a 2.3 wt.% sPFR loading shows a higher performance than that of a native Nafion® membrane with 1 M methanol feed, and at higher methanol concentrations (5 M), the composite membrane achieved a 114 mW cm−2 maximum power density, while the maximum power density of the native Nafion® was only 78 mW cm−2.  相似文献   

5.
Surface-modified Nafion® membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion®. The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion® is slightly lower than that of plain Nafion®; however, its methanol permeability is 41% lower than that of plain Nafion®. The single cells with modified Nafion® exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (Pmax = 58 mW cm−2) than the single cells with plain Nafion® (OCV = 0.67 V, Pmax = 49 mW cm−2). It is a simple, efficient, cost-effective approach to modifying Nafion® by casting proton-conducting materials on the surface of Nafion®.  相似文献   

6.
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm−2 at current density of 60 mA cm−2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.  相似文献   

7.
This work has been focused on the characterization of the methanol permeability and fuel cell performance of composite Nafion/PVA membranes in function of their thickness, which ranged from 19 to 97 μm. The composite membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The resistance to methanol permeation of the Nafion/PVA membranes shows a linear variation with the thickness. The separation between apparent and true permeability permits to give an estimated value of 4.0 × 10−7 cm2 s−1 for the intrinsic or true permeability of the bulk phase at the composite membranes. The incorporation of PVA nanofibers causes a remarkable reduction of one order of magnitude in the methanol permeability as compared with pristine Nafion® membranes. The DMFC performances of membrane-electrode assemblies prepared from Nafion/PVA and pristine Nafion® membranes were tested at 45, 70 and 95 °C under various methanol concentrations, i.e., 1, 2 and 3 M. The nanocomposite membranes with thicknesses of 19 μm and 47 μm reached power densities of 211 mW cm−2 and 184 mW cm−2 at 95 °C and 2 M methanol concentration. These results are comparable to those found for Nafion® membranes with similar thickness at the same conditions, which were 210 mW cm−2 and 204 mW cm−2 respectively. Due to the lower amount of Nafion® polymer present within the composite membranes, it is suggested a high degree of utilization of Nafion® as proton conductive material within the Nafion/PVA membranes, and therefore, significant savings in the consumed amount of Nafion® are potentially able to be achieved. In addition, the reinforcement effect caused by the PVA nanofibers offers the possibility of preparing membranes with very low thickness and good mechanical properties, while on the other hand, pristine Nafion® membranes are unpractical below a thickness of 50 μm.  相似文献   

8.
A novel ultrasonic-spray method for preparing gas diffusion electrodes (GDEs) for proton exchange membrane fuel cell (PEMFC) is described. Platinum (Pt) loaded on Nafion®-bonded GDEs were prepared by the ultrasonic-spray method on various commercial woven and non-woven gas diffusion layers (GDLs) at several Pt loadings in the range of 0.40-0.05 mg cm−2. The ultrasonic-sprayed GDEs were tested and compared to commercial and hand-painted GDEs. It was found that the GDEs prepared by the ultrasonic-spray method exhibited better performances compared to those prepared by the hand-painting technique, especially at low Pt loadings. GDEs fabricated by the ultrasonic-spray method with a platinum loading of 0.05 mg cm−2 exhibited a peak power rating of 10.9 W mg−1 compared to 9.8 W mg−1 for hand-painted GDEs. For all experiments using various GDLs, Sigracet SGL 10BC exhibited the best performance with a peak power of 0.695 W cm−2.  相似文献   

9.
Anion exchange membrane fumasep® FAA-2 was characterized with ex and in situ methods in order to estimate the membranes’ suitability as an electrolyte for an alkaline direct methanol fuel cell (ADMFC). The interactions of this membrane with water, hydroxyl ions and methanol were studied with both calorimetry and NMR and compared with the widely used proton exchange membrane Nafion® 115. The results indicate that FAA-2 has a tighter structure and more homogeneous distribution of ionic groups in contrast to the clustered structure of Nafion, moreover, the diffusion of OH ions through this membrane is clearly slower compared to water molecules. The permeability of methanol through the FAA-2 membrane was found to be an order of magnitude lower than for Nafion. Fuel cell experiments in 1 mol dm−3 methanol with FAA-2 resulted in OCV of 0.58 V and maximum power density of 0.32 mW cm−2. However, even higher current densities were obtained with highly concentrated fuels. This implies that less water is needed for fuel dilution, thereby decreasing the mass of the fuel cell system. In addition, electrochemical impedance spectroscopy for the ADMFC was used to determine ohmic resistance of the cell facilitating the further membrane development.  相似文献   

10.
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion® to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion®, and the methanol permeability is reduced significantly to 4.29 × 10−7-5.34 × 10−7 cm2 s−1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10−7-7.11 × 10−7 cm2 s−1 for S63N38, with a maximum proton conductivity of ∼0.085 S cm−1. This study examines the single-cell performance at 80 °C of Nafion®/nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm−2 for S63N17 and 24-29 mW cm−2 for S63N38. Both the power density and open circuit voltage are higher than those of Nafion® 115 and recast Nafion®.  相似文献   

11.
In a high-concentration direct methanol fuel cell (HC-DMFC), the methanol crossover is typically decreased to an acceptable level by two main mechanisms: high methanol transport resistance between the anode reservoir and the membrane electrode assembly (MEA), and high water back flow from the cathode to the anode. Based on the semi-passive HC-DMFC fabricated in this work, the effects of methanol barrier layer (MBL) thickness and electrolyte membrane thickness on cell performance, methanol and water crossover, and fuel efficiency have been studied. The results showed that a thicker MBL could significantly decrease the methanol and water crossover by increasing the mass transport resistance between the anode reservoir and the MEA, while a thinner Nafion® membrane could also significantly decrease the methanol and water crossover by enhancing the water back flow from the cathode through the electrolyte membrane to the anode. Using Nafion® 212 as the electrolyte membrane, and a 6.4 mm porous PTFE plate as the MBL, a semi-passive HC-DMFC operating at 70 °C produced the maximum power density of 115.8 mW cm−2 when 20 M methanol solution was fed as the fuel.  相似文献   

12.
A surface-modified membrane is prepared using a sputtering technique that deposits gold directly on a Nafion® 115 membrane surface that is roughened with silicon carbide paper. The surface-modified membranes are characterized by means of a scanning electron microscope (SEM), differential scanning calorimetry (DSC), and water contact-angle analysis. A single direct methanol fuel cell (DMFC) with a surface-modified membrane exhibits enhanced performance (160 mW cm−2), while a bare Nafion® 115 cell yields 113 mW cm−2 at 0.4 V and an operating temperature of 70 °C. From FE-SEM images and COad stripping voltammograms, it is also found that the gold layer is composed of clusters of porous nodule-like particles, which indicates that an anode with nodule-like gold leads to the preferential oxidation of carbon monoxide. These results suggest that the topology of gold in the interfacial area and its electrocatalytic nature may be the critical factors that affect DMFC performance.  相似文献   

13.
The fuel cell performance (DMFC and H2/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 0.5 M methanol was 145 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 136 mW cm−2. The power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 2.0 M methanol was 144.5 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 143 mW cm−2.  相似文献   

14.
Various molecular weights of poly(propylene oxide) diamines oligomers/Nafion® acid–base blend membranes were prepared to improve the performance of Nafion® membranes in direct methanol fuel cells (DMFCs). The acid–base interactions were studied by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The performance of the blend membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The proton conductivity was slightly reduced by acid–base interaction. The methanol permeability of the blend D2000/Nafion® was 8.61 × 10−7 cm2 S−1, which was reduced 60% compared to that of pristine Nafion®. The cell performance of D2000/Nafion® blend membranes was enhanced significantly compared to pristine Nafion®. The current densities that were measured with Nafion® and 3.5 wt% D2000/Nafion® blend membranes were 62.5 and 103.5 mA cm−2, respectively, at a potential of 0.2 V. Consequently, the blend poly(propylene oxide) diamines oligomers/Nafion® membranes critically improved the single-cell performance of DMFC.  相似文献   

15.
HMS-based sulphonated poly(arylene ether sulphone) (HMSSH) is synthesised using 4,4′-dihydroxy-α-methylstilbene (HMS) monomer to introduce an interesting stilbene core as crosslinkable group. Crosslinked blend membranes are obtained by blending the BPA-based sulphonated poly(arylene ether sulphone) (BPASH) with crosslinkable HMS-based sulphonated poly(arylene ether sulphone) by UV irradiation of the blend membrane. Compared to the native BPASH with crosslinked BPASH/HMSSH blend membranes, the crosslinked blend membranes greatly reduce the water uptake and methanol permeability with only a slight reduction in proton conductivity. The crosslinked blend membrane, which has a 6% HMSSH content, has a water uptake of 59%, methanol permeability of 0.75 × 10−6 cm2 s−1, and proton conductivity of 0.08 S cm−1. A membrane-electrode assembly is used to investigate single-cell performance and durability test for DMFC applications. Both the power density and open circuit voltage are higher than those of Nafion® 117. A maximum power density of 32 mW cm−2 at 0.2 V is obtained at 80 °C, which is higher than that of Nafion® 117 (25 mW cm−2).  相似文献   

16.
Performance of a new type of mass transfer layer (MTL) compared to a commercial material has been shown in single fuel cell testing. GRAFCELL® natural graphite MTL is used as a cathode diffusion media along with carbon cloth. Its chemically modified permeable structure is diffusion limited at high current densities, independent of temperature, while perforated structure provides temperature dependent performance increases. The impact of open area variation in perforated mass transfer layer (PMTL) is demonstrated at high current densities and shows advantages over commercial material at room temperature operation. Performance reaches about 25 mW cm−2 at room temperature testing with maximum current density around 250 mA cm−2. Better performance is attributed to large openings for liquid transfer with PMTL compare to ELAT. Being able to design perforations on expanded graphite material may also play role in developing passive fuel supply systems for future liquid fuel power sources.  相似文献   

17.
Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion® binder whereas the PCH binder exhibited comparable performance to Nafion® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm−2 at 70 °C.  相似文献   

18.
A self-humidifying composite membrane based on Nafion® hybrid with SiO2 supported sulfated zirconia particles (SiO2–SZ) was fabricated and investigated for fuel cell applications. The bi-functional SiO2–SZ particles, possessing hygroscopic property and high proton conductivity, were homemade and as the additive incorporated into our composite membrane. X-ray diffraction (XRD) and Fourier infrared spectrum (FT-IR) techniques were employed to characterize the structure of SiO2–SZ particles. Scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were conducted to study the morphology of composite membrane. To verify the advantages of Nafion®/SiO2–SZ composite membrane, the IEC value, water uptake, proton conductivity, single cell performance and areal resistance were compared with Nafion®/SiO2 membrane and recast Nafion® membrane. The single cell employing our Nafion®/SiO2–SZ membrane exhibited the highest peak power density of 0.98 W cm−2 under dry operation condition in comparison with 0.74 W cm−2 of Nafion®/SiO2 membrane and 0.64 W cm−2 of recast Nafion® membrane, respectively. The improved performance was attributed to the introduction of SiO2–SZ particles, whose high proton conductivity and good water adsorbing/retaining function under dry operation condition, could facilitate proton transfer and water balance in the membrane.  相似文献   

19.
A semi-interpenetrating polymer network (semi-IPN) proton exchange membrane is prepared from the sulfonated poly(ether ether ketone) (sPEEK) and organosiloxane-based organic/inorganic hybrid network (organosiloxane network). The organosiloxane network is synthesized from 3-glycidyloxypropyltrimethoxysiane and 1-hydroxyethane-1,1-diphosphonic acid. The semi-IPN membranes prepared were stable up to 300 °C without any degradation. The methanol permeability is much lower than Nafion® 117 under addition of the organosiloxane network. The proton conductivity of semi-IPN membranes increases with an increase the organosiloxane network content; the membrane containing the 20-24 wt% organosiloxane network shows higher conductivity than Nafion® 117. The power density of the MEA fabricated with the semi-IPN membrane with 24 wt% organosiloxane network is 135 mW cm−2, much better than that of the pristine sPEEK membrane, 85 mW cm−2. Chemical synthesis of the semi-IPN membranes is identified using FTIR, and its ion cluster dimension examined using SAXS. The dimensional stability associated with water swelling and dissolution is investigated at different temperatures, and the semi IPN membranes dimensionally stable in water at elevated temperature.  相似文献   

20.
Sulfonated-silica/Nafion® composite membranes were prepared in a sol–gel reaction of (3-Mercaptopropyl)trimethoxysilane (SH-silane) followed by solution casting, and then oxidated using 10 wt% H2O2 solution. The chemical and physical properties of the composite membranes were characterized by using FT-IR, XPS, 29Si NMR and SEM analyses. Experimental results indicated that the optimum oxidation condition was 60 °C for 1 h. The performance of the silica–SO3H/Nafion® composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The silica–SO3H/Nafion® composite membranes have a higher selectivity (C/P ratio = 26,653) than that of pristine Nafion® (22,795), perhaps because of their higher proton conductivity and lower methanol permeability. The composite membrane with 0.6 wt% silica–SO3H/Nafion® performed better than pristine Nafion®. The current densities were measured as 62.5 and 70 mA cm−2 at a potential of 0.2 V with a composite membrane that contained 0 and 0.6 wt% silica–SO3H, respectively. The cell performance of the DMFC was improved by introducing silica–SO3H. The composite membrane with 0.6 wt% of silica–SO3H yielded the maximum power density of 15.18 mW cm−2. The composite membranes are suitable for DMFC applications with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号