共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental purpose is to test gravity influence on water discharged in PEM fuel cell cathode. Through changing the way of placement of the cathode and anode, it takes adjusting the electronic load to test the output of voltage and current. Corresponding to the position of the cathode-upward and the anode-upward, different humidification condition, draws the polarization curve using the voltage and current density. According to the placing position of the cathode and anode, cell temperature, humidification temperature of the cathode and anode gas, 4 groups of experimental results are obtained. The experimental conclusion is: when a PEM fuel cell is placed anode-upward, gravity is advantageous to discharge the liquid water in PEM fuel cell cathode. On the contrary, gravity is disadvantageous to discharge the liquid water. 相似文献
2.
O. Shamardina A. Chertovich A.A. Kulikovsky A.R. Khokhlov 《International Journal of Hydrogen Energy》2010
We develop a simple analytical model of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated against experimental results obtained in our group. The model is pseudo two dimensional, steady-state and isothermal, it accounts for the crossover of reactant gases through the membrane and it can be solved analytically. The role of the crossover is considered in detail. 相似文献
3.
In this paper, a two-phase non-isothermal PEM fuel cell model based on the previously developed mixed-domain PEM fuel cell model with a consistent treatment of water transport in MEA has been established using the traditional two-fluid method. This two-phase multi-dimensional PEM fuel cell model could fully incorporate both the anode and cathode sides, properly account for the various water phases, including water vapor, water in the membrane phase, and liquid water, and truly enable numerical investigations of water and thermal management issues with the existence of condensation/evaporation interfaces in a PEM fuel cell. This two-phase model has been applied in this paper in a two-dimensional configuration to determine the appropriate condensation and evaporation rate coefficients and conduct extensive numerical studies concerning the effects of the inlet humidity condition and temperature variation on liquid water distribution with or without a condensation/evaporation interface. 相似文献
4.
K. Latha S. Vidhya B. Umamaheswari N. Rajalakshmi K.S. Dhathathreyan 《International Journal of Hydrogen Energy》2013
Many models are available with various degrees of complexity to study the behaviour of Proton Exchange Membrane Fuel Cells (PEMFC) under varying operating conditions. To our knowledge no model has been developed from single cells to multiple cells with increased electrode area for PEMFC stacks along with power conditioners, by considering the dynamic characteristics of the fuel cells under the influence of stoichiometry, humidity ratio and their response during their integration with power conditioners. We have developed a model using Matlab to study the transient response of the cell for 30 cm2, which has been extended to a multicell stack of 1.2 kW capacity of electrode area 150 cm2. The developed model has been validated using PEMFC single cells and stacks, by considering partial pressure of hydrogen, oxygen, and water as three states, anode fuel utilization and all three losses. This model is proposed to evaluate the transient response of all the stacks developed at Centre for Fuel Cell Technology (CFCT) ranging from a few watts to 10 kW that are integrated with various power conditioners depending on the applications. 相似文献
5.
M. Srinivasarao D. Bhattacharyya R. Rengaswamy S. Narasimhan 《International Journal of Hydrogen Energy》2010
The cathode catalyst layer (CL) of a PEM fuel cell (PEMFC) plays an important role in the performance of the cell because of the rate limiting mechanisms that take place in it. For enhancing the performance of a PEMFC, the use of multiple, ultra thin CLs instead of a single CL is considered in the present work. Since the concentration of oxygen decreases in a CL from the diffusion medium-CL interface towards the polymer membrane, the CL adjacent to the diffusion medium should be of higher porosity than the other CLs. Similarly, the CL adjacent to the polymer membrane should contain more ionomer than the other CLs. Furthermore, liquid water should be removed without causing significant mass transport and/or ohmic losses. Therefore, the design parameters of a CL can be varied spatially to minimize losses in a PEMFC. However, such a continuously graded CL is difficult to manufacture due to lack of commercially available techniques and associated costs. As an alternative, a combination of layers can be synthesized where each layer is manufactured with different design parameters. This approach provides the opportunity to optimize the design parameters of each layer. With this objective in mind, a detailed steady state model of a PEMFC cathode with multiple layers is developed. The model considers liquid water in all the layers. The catalyst layer microstructure is modeled as a network of spherical agglomerates. For improved water management, a thin micro-porous layer is considered between the gas diffusion layer (GDL) and the first catalyst layer. The performance curves for various combinations of the design parameters are shown and the results are analyzed. The results show that there exists an optimum combination of design parameters for each catalyst layer that can significantly improve the performance of a PEMFC. 相似文献
6.
Rapidah OthmanAndrew L. Dicks Zhonghua Zhu 《International Journal of Hydrogen Energy》2012,37(1):357-372
Low temperature fuel cells, such as the proton exchange membrane (PEM) fuel cell, have required the use of highly active catalysts to promote both the fuel oxidation at the anode and oxygen reduction at the cathode. Attention has been particularly given to the oxygen reduction reaction (ORR) since this appears to be responsible for major voltage losses within the cell. To provide the requisite activity and minimse losses, precious metal catalysts (containing Pt) continue to be used for the cathode catalyst. At the same time, much research is in progress to reduce the costs associated with Pt cathode catalysts, by identifying and developing non-precious metal alternatives. This review outlines classes of non-precious metal systems that have been investigated over the past 10 years. Whilst none of these so far have provided the performance and durability of Pt systems some, such as transition metals supported on porous carbons, have demonstrated reasonable electrocatalytic activity. Of the newer catalysts, iron-based nanostructures on nitrogen-functionalised mesoporous carbons are beginning to emerge as possible contenders for future commercial PEMFC systems. 相似文献
7.
In this work, a three-dimensional, steady-state, multi-agglomerate model of cathode catalyst layer in polymer electrolyte membrane (PEM) fuel cells has been developed to assess the activation polarization and the current densities in the cathode catalyst layer. A finite element technique is used for the numerical solution to the model developed. The cathode activation overpotentials, and the membrane and solid phase current densities are calculated for different operating conditions. Three different configurations of agglomerate arrangements are considered, an in-line and two staggered arrangements. All the three arrangements are simulated for typical operating conditions inside the PEM fuel cell in order to investigate the oxygen transport process through the cathode catalyst layer, and its impact on the activation polarization. A comprehensive validation with the well-established two-dimensional “axi-symmetric model” has been performed to validate the three-dimensional numerical model results. Present results show a lowest activation overpotential when the agglomerate arrangement is in-line. For more realistic scenarios, staggered arrangements, the activation overpotentials are higher due to the slower oxygen transport and lesser passage or void region available around the individual agglomerate. The present study elucidates that the cathode overpotential reduction is possible through the changing of agglomerate arrangements. Hence, the approaches to cathode overpotential reduction through the optimization of agglomerate arrangement will be helpful for the next generation fuel cell design. 相似文献
8.
A two-dimensional (2D), single- and two-phase, hybrid multi-component transport model is developed for the cathode of PEM fuel cell using interdigitated gas distributor. The continuity equation and Darcy's law are used to describe the flow of the reactant gas and production water. The production water is treated as vapor when the current density is small, and as two-phase while the current density is greater than the critical current density. The advection–diffusion equations are utilized to study species transport of multi-component mixture gas. The Butler–Volmer equation is prescribed for the domain in the catalyst layer. The predicted results of the hybrid model agree well with the available experimental data. The model is used to investigate the effects of operating conditions and the cathode structure parameters on the performance of the PEM fuel cell. It is observed that liquid water appears originally in the cathodic catalyst layer over outlet channel under intermediate current and tends to be distributed uniformly by the capillary force with the increase of the current. It is found that reduction of the width of outlet channel can enhance the performance of PEM fuel cell via the increase of the current density over this region, which has, seemingly, not been discussed in previous literatures. 相似文献
9.
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as “flooding”, on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process. 相似文献
10.
The voltage dynamic properties of PEM fuel cell stack have been analyzed through experimental investigation. Different behaviours between voltage overshoot and undershoot are found under load commutations. A semi-empirical dynamic model for stack voltage is introduced on the basis of experimental investigation. The proposed model can predict the transient response of stack voltage under step change in current. Comparing with previous model, the suggested model indicates a better agreement between tests and simulations. 相似文献
11.
N. Khajeh-Hosseini-Dalasm M.J. Kermani D. Ghadiri Moghaddam J.M. Stockie 《International Journal of Hydrogen Energy》2010
This paper is a computational study of the cathode catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) and how changes in its structural parameters affect performance. The underlying mathematical model assumes homogeneous and steady-state conditions, and consists of equations that include the effects of oxygen diffusion, electrochemical reaction rates, and transport of protons and electrons through the Nafion ionomer (PEM) and solid phases. Simulations are concerned with the problem of minimizing activation overpotential for a given current density. The CL consists of four phases: ionomer, solid substrate, catalyst particles and void spaces. The void spaces are assumed to be fully flooded by liquid water so that oxygen within the CL can diffuse to reaction sites via two routes: within the flooded void spaces and dissolved within the ionomer phase. The net diffusive flux of oxygen through the cathode CL is obtained by incorporating these two diffusive fluxes via a parallel resistance type model. The effect of six structural parameters on the CL performance is considered: platinum and carbon mass loadings, ionomer volume fraction, the extent to which the gas diffusion layer (GDL) extends into the CL, the GDL porosity and CL thickness. Numerical simulations demonstrate that the cathode CL performance is most strongly affected by the ionomer volume fraction, CL thickness and carbon mass loading. These results give useful guidelines for manufactures of PEMFC catalyst layers. 相似文献
12.
This work presents the validation carried out for a three dimensional CFD 50 cm2 PEM fuel cell model, particularly focus on the prediction of liquid water distributions within the cell. The CFD model was previously validated against a set of experimental polarization curves, where model results adequately matched the experimental curves. An extension of the validation is presented in this work, by performing a comparison of the local liquid water distributions predicted by the model with the liquid water distributions of the real cell. The experimental measurements were obtained by means of Neutron Imaging, where a set of different cell operating conditions was tested. Although the exact quantitative results are not directly comparable due to differences in the cell setup, qualitative results show a very good agreement between the model results and the water distributions observed in the neutron radiographs. A model validation approach using local variable distributions (such as liquid water in this case) in addition to the integral quantities (i.e. polarization curves) is necessary to ensure the validity of models. 相似文献
13.
The effect of flow distributors on the liquid water distribution and performance of a PEM fuel cell 总被引:1,自引:0,他引:1
P.K. Jithesh A.S. BansodeT. Sundararajan Sarit K. Das 《International Journal of Hydrogen Energy》2012
Water management is one of the important factors which determine the performance of a Proton Exchange Membrane (PEM) fuel cell using hydrogen as fuel. For developing efficient water management systems, it is important to know the potential locations of formation and the nature of distribution of liquid water in the fuel cell. In the present study a PEM fuel cell with three different types of flow distributors are modeled and numerically simulated to find out the water formation and distribution characteristics. The model is validated by comparing the simulated polarization curve to experimental data. It is found that the type of flow distributor used plays a major role in determining the distribution of liquid water in the cell. A parallel flow distributor exhibits poor water removal capabilities whereas a serpentine flow distributor exhibits better water removal. A mixed flow distributor is found to give better water distribution characteristics compared to the parallel and serpentine distributors. Further the effect of liquid water formation and distribution on the species transport, temperature distribution and current generation are also investigated. 相似文献
14.
A full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena in a PEM fuel cell: convective and diffusive heat and mass transfer, electrode kinetics, and potential fields. In addition to the tubular-shaped geometry, the model feature an algorithm that allows for more realistic representation of the local activation overpotentials which leads to improved prediction of the local current density distribution. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented. The model is shown to be able to understand the many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. 相似文献
15.
In this paper, a two-phase two-dimensional PEM fuel cell model, which is capable of handling liquid water transport across different porous materials, is employed for parametric studies of liquid water transport and distribution in the cathode of a PEM fuel cell. Attention is paid particularly to the coupled effects of two-phase flow and heat transfer phenomena. The effects of key operation parameters, including the outside cell boundary temperature, the cathode gas humidification condition, and the cell operation current, on the liquid water behaviors and cell performance have been examined in detail. Numerical results elucidate that increasing the fuel cell temperature would not only enhance liquid water evaporation and thus decrease the liquid saturation inside the PEM fuel cell cathode, but also change the location where liquid water is condensed or evaporated. At a cell boundary temperature of 80 °C, liquid water inside the catalyst layer and gas diffusion media under the current-collecting land would flow laterally towards the gas channel and become evaporated along an interface separating the land and channel. As the cell boundary temperature increases, the maximum current density inside the membrane would shift laterally towards the current-collecting land, a phenomenon dictated by membrane hydration. Increasing the gas humidification condition in the cathode gas channel and/or increasing the operating current of the fuel cell could offset the temperature effect on liquid water transport and distribution. 相似文献
16.
The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air–water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity. 相似文献
17.
Efficiency is an important factor to reflect the performance of fuel cell engine (FCE). Evaluating efficiency should consider efficiency properties and common work conditions of FCE. In this paper, output power of FCE on real work conditions is analyzed according to driving cycles, and four efficiency evaluation points are obtained, as well as their weighted values. Then, a scoring function is used to convert the efficiency values of four evaluation points into scores. Multiplying scores by their weighted values and adding them together, we can get overall scores of efficiency properties. This method can evaluate the efficiency performance of FCE reasonably and objectively. 相似文献
18.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell. 相似文献
19.
Fuel cells are energy transformation technologies and they are clean, don't damage to environment, have high efficiency and provide uninterruptible energy generation. Research and development studies about fuel cells have been done increasingly. In the recent years, fuel cell technologies have performed in some sectors such as military, industrial, space, portable, residential, transportation and trading. 相似文献
20.
A three-dimensional mixed-domain PEM fuel cell model with fully-coupled transport phenomena has been developed in this paper. In this model, after fully justified simplifications, only one set of interfacial boundary conditions is required to connect the water content equation inside the membrane and the equation of the water mass fraction in the other regions. All the other conservation equations are still solved in the single-domain framework. Numerical results indicate that although the fully-coupled transport phenomena produce only minor effects on the overall PEM fuel cell performance, i.e. average current density, they impose significant effects on current distribution, net water transfer coefficient, velocity and density variations, and species distributions. Intricate interactions of the mass transfer across the membrane, electrochemical kinetics, density and velocity variations, and species distributions dictate the detailed cell performances. Therefore, for accurate PEM fuel cell modeling and simulation, the effects of the fully-coupled transport phenomena could not be neglected. 相似文献