首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A great amount of world energy demand is connected to the built environment. Electricity use in the commercial buildings, accounts for about one-third of the total energy consumption in Turkey and fully air-conditioned office buildings are important commercial electricity end-users since the mid-1990s. In the presented paper, the interactions between different conditions, control strategies and heating/cooling loads in office buildings in the four major climatic zones in Turkey – hot summer and cold winter, mild, hot summer and warm winter, hot and humid summer and warm winter – through building energy simulation program has been evaluated. The simulation results are compared with the values obtained from site measurements done in an office building located in Istanbul. The site-recorded data and simulation results are compared and analyzed. This verified model was used as a means to examine some energy conservation opportunities on annual cooling, heating and total building load at four major cities which were selected as a representative of the four climatic regions in Turkey. The effect of the parameters like the climatic conditions (location), insulation and thermal mass, aspect ratio, color of external surfaces, shading, window systems including window area and glazing system, ventilation rates and different outdoor air control strategies on annual building energy requirements is examined and the results are presented for each city.  相似文献   

2.
《Energy and Buildings》2005,37(11):1175-1185
The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for the Zurich–Kloten location, which is representative for the climatic situation in the Swiss Central Plateau. A multistory building with varying thermal insulation levels and internal heat gains, and a fixed window area fraction of 30% was considered. For the time horizon 2050–2100, a climatic warm reference year scenario was used that foresees a 4.4 °C rise in mean annual air temperature relative to the 1961–1990 climatological normals and is thereby roughly in line with the climate change predictions made by the Intergovernmental Panel on Climate Change (IPCC). The calculation results show a 33–44% decrease in the annual heating energy demand for Swiss residential buildings for the period 2050–2100. The annual cooling energy demand for office buildings with internal heat gains of 20–30 W/m2 will increase by 223–1050% while the heating energy demand will fall by 36–58%. A shortening of the heating season by up to 53 days can be observed. The study shows that efficient solar protection and night ventilation strategies capable of keeping indoor air temperatures within an acceptable comfort range and obviating the need for cooling plant are set to become a crucial building design issue.  相似文献   

3.
《Energy and Buildings》2006,38(3):266-272
One of the most important properties of a passively designed building is to provide thermal comfort conditions for users with a minimum heating energy cost. Therefore, primary parameters affecting heating energy consumption should be determined correctly during the design stage. Building envelope and operation period of the heating system are important parameters affecting total heating energy consumption in the building. In this study, an approach for the determination of the most convenient building envelope-operation period combination in relation to the life cycle cost and climatic comfort is proposed. For the application of the approach, total heat loss and life cycle cost of the building envelope-operation period combinations of a sample building, which is heated intermittently and used during underheated period of the year were calculated and combinations which provide thermal comfort during the occupation period with the minimum life cycle cost are determined as a most convenient combinations. This study is carried out in Istanbul, which is representative city for temperate-humid zone of Turkey.  相似文献   

4.
《Energy and Buildings》2005,37(7):691-697
As is known double skin façade applications have an important role on passive solar strategies. In this paper, heat losses of a single skin and a double skin façade office buildings were compared to show the effect of double skin on building energy demand for winter period in Istanbul. Calculations have been carried out for the January, which is assumed as the representative month of winter period in Istanbul considering Istanbul's climatic conditions. However there is no any double skin façade application in Istanbul, the thermal effect of the double skin has been theoretically analysed to show the effect of double skin façade on heat losses if this technology would be applied by the construction industry in Turkey. In this study a new method is used in double skin façade's heat losses calculations. The realization of the proposed method is composed of two main steps. The first step is formed from the modification of a previous method, which is proposed by Todorovic, to calculate inter-space temperature. For the second step inter-space temperatures calculated in the first step have been accepted as outdoor air temperature and time dependent heat transfer through the inner skin of the envelope has been calculated by using finite difference numerical approach. It has been assumed that the space between two skins is closed since the calculations have been made for the winter period. It has been concluded that heating energy consumption is significantly reduced in double skin façade building for winter conditions in Istanbul.  相似文献   

5.
The general methodology for estimating energy consumption in buildings, in accordance with the EN ISO 13790, needs the use of constants that are valid for each set of climatic conditions. Furthermore, there are variables other than building structure and weather conditions that have an influence. In this sense, recent research works showed the real effect of permeable coverings on indoor environmental conditions, by controlling indoor moisture. The effect of the associated heat and mass transfer on heating or cooling energy consumption is evident during the initial hours of building occupation. In the present paper, the general methodology of building heat demand calculation is modified to consider different levels of permeability of internal coverings, in order to obtain a more accurate model. Results showed that permeable coverings are related with a higher building utilisation factor, and that the value of this factor is higher in summer than in winter season. Consequently, despite the fact that the sensibility of energy consumption to internal coverings may be lower than to building envelope, new constants are proposed to express a relationship between building permeability and energy consumption, in order to apply the certification equation.  相似文献   

6.
In this analysis, the energy performance of a courtyard in buildings is investigated under conditions of different factors of climate, height, glazing type, and glazing percentage. The courtyard design used for the analysis was square in plan and surrounded by the building on all four sides. The glazing type and percentage for the courtyard walls were varied in the analysis. Weather data from four cities representative of climatic conditions of cold, temperate, hot-humid, and hot-dry were used. The computer energy simulation program DOE2.1E was used in this analysis as a tool to evaluate the impact of these factors on the energy consumption of the buildings. The results of the parametric simulation showed that the courtyard building thermal performance differed from climate to climate and even the impact of the measures or the variables on cooling, heating, and the total annual energy consumption differed with different variables’ configuration. In general, the open courtyard building exhibits a better energy performance in hot-dry and hot-humid climates.  相似文献   

7.
Europe with more than 600 millions of square meters of air-conditioned office buildings offers an opportunity to save energy and reduce CO2 emissions by reconverting chillers into reversible heat pumps in office buildings. One of the questions asked in the framework of the IEA ECBCS Annex 48 is how to assess the energy saving potential and how to identify the most interesting building cases. The methodology proposed here is based on the simulation of office buildings representative of the building stock. The energy consumption has been simulated for different office building types in five European climatic zones on the one hand with boilers for heating and chillers for cooling, and on the other hand with reversible chillers plus back-up boilers. The results of the simulations in terms of energy consumption allow us to assess the primary energy savings and CO2 emission reduction in Europe by reconverting chillers into reversible heat pumps. The results show that the potential of annual primary energy savings and annual CO2 emission reduction are about 8 TWhPE and 3 millions of tons of CO2 in Europe-15. Even if the temperature level in terminal units can be solved using the cooling coil instead of the heating coil, a back up boiler turns generally out to be required for the coldest days in the year or when simultaneous heating and cooling demands occur.  相似文献   

8.
The shortcomings or limitations of the traditional approach to developing energy efficient buildings are that they can not determine: (1) the ideal thermophysical properties of building envelope material, where “ideal” means that such material can use ambient air temperature variation and/or solar radiation efficiently to keep the indoor air temperature in the thermal comfort range with no additional space heating or cooling; (2) the best natural ventilation strategy; (3) the minimal additional energy consumption for space heating in winter or air-conditioning in summer. To overcome these problems, some new concepts for developing energy efficient buildings are put forward in this paper. They are the ideal thermophysical properties of the building envelope material, the ideal natural ventilation rate, and a minimal additional space heating or cooling energy consumption. A new approach for determining these properties is also developed. In contrast to the traditional approach (the thermophysical properties of building envelope material are known and constant so that the relating equations describing the indoor air temperature tend to be linear differential equations), the new approach solves the inverse problem (thermophysical properties, etc. of a buildings are unknown), whose solution can be a function instead of a value. As a first step, the ideal specific heat of the building envelope material for internal thermal mass is analyzed for buildings located in various cities in different climatic regions of China, such as Beijing, Shanghai, Harbin, Urumchi, Lhasa, Kunming and Guangzhou. We found that the ideal specific heat is composed of a basic value and an excessive one which is of δ function for the cases studied. Some limitations that would need further study are introduced in the end of the paper.  相似文献   

9.
This study aimed to propose climatic zones in the Brazilian semiarid region using multivariate statistical techniques and to characterize these zones for energy efficiency applications in buildings. Principal component analysis (PCA) was used to select the variables with the greatest practical relevance. From this selection, hierarchical cluster analysis (HCA) was used to spatially define climatically homogeneous zones. For each defined zone, the most feasible constructive thermal conditioning strategies were defined, and the thermal indexes of heat and degree-hours of cooling and heating were calculated. As result, PCA reduced the dimensionality of the initial database from 104 to 48 variables, among which the climatic and bioclimatic variables related to temperature stood out. From the HCA, three climatic zones were defined for the Brazilian semiarid region. For all zones, there was a high demand for constructive conditioning strategies, which have to be adopted in more than half of the total annual hours. The proposed zoning is adapted to the climatic aspects of the Brazilian semiarid and has significant potential for applications in construction planning in this region. Moreover, the methodology presented can be applied for establishing climatic zones in other regions, which can contribute to increasing the energy efficiency of buildings.  相似文献   

10.
在分析贵阳市气候特点及实例建筑空调负荷特性的基础上,采用建筑环境模拟软件DeST对实例建筑室内基础室温以及全年建筑冷热负荷进行模拟,在分析模拟结果的基础上,结合贵阳市气候特点,提出如下三条贵阳市降低建筑空调能耗建议:1)舒适性空调设计应首先满足冬季采暖,然后考虑夏季制冷;2)自然通风是夏季降温的优先考虑方式,过渡季节调节是降低建筑制冷能耗的重要手段;3)增加围护结构保温和控制窗墙比是降低建筑采暖能耗的首要手段。研究结果不但能对贵阳市的建筑节能提供参考,而且还对广大温和地区建筑节能有参考意义。  相似文献   

11.
In this paper a model of a high-rise building is constructed in the simulation program IDA ICE. The model is based on an IFC-model of a demonstration building constructed in Ljubljana, Slovenia, as part of an EU-project, EE-high-rise. The model’s energy performance was simulated for four cities: Umeå (Scandinavia), Ljubljana (Central Europe), Sibenik (Mediterranean) and Dubai (The Persian Gulf). Furthermore, the climate envelope of the building was modified with the aim to improve the model’s energy performance in each of the regions. The results were evaluated according to the energy requirements of passive house standard by the German Passive House Institute. The analysis suggests that the reference building model, which itself incorporates several energy efficient components, was unable to meet the German passive house standard in none of the four cities (Umeå, Ljubljana, Sibenik and Dubai) studied. By providing a combination of energy saving measures, such as modifications of thermal resistance of building envelope, the building may be able to meet the passive house standard in Ljubljana. The analysis concludes that the reduction in window area results in reduction of both heating and cooling demand. Increase in the thickness of the insulation and the thermal resistance of windows reduces the space heating demand for Umeå, Ljubljana and Sibenik (not applied for Dubai) while increasing the cooling demand for these cities. Increased airtightness has marginal effect on heating and cooling demand for all investigated cities. Reduced thermal resistance of windows will decrease cooling demand for Ljubljana, Sibenik and Dubai (not applied for Umeå). Reduced insulation thickness (not applied for Umeå) will decrease cooling demand for Ljubljana and Sibenik but not for Dubai. Reducing the insulation thickness may often result in reduced cooling demand for moderately warm countries since the average outdoor temperature could be lower than the indoor temperature during part of the cooling season. In those situations a reduced insulation thickness can cause heat flow from the relatively hot inside to the colder outside. However, for hot climates like in Dubai where outdoor temperature is higher than the indoor temperature for most of the year, reducing the insulation thickness will increase the cooling demand. This result suggests that the insulation thickness must be chosen and optimized based on heating and cooling demand, internal heat gain, and outdoor climate  相似文献   

12.
居住建筑围护结构的节能问题   总被引:9,自引:1,他引:8  
从适宜居住的角度讲,我国绝大部分地区的居住建筑都要采取一定的技术措施来保证冬夏两季的室内热舒适环境。冬夏两季室内维持的温度与室外的温度有很大的差别,这个温差导致能量以热的形式流出或流入室内,采暖,空调设备消耗的能量主要就是用来补充这个能量损失的。在相同的室内外温差条件下,建筑围护结构保温隔热性能的好坏,直接影响到流出或流入室内的热量的多少。建筑围护结构保温隔热性能好,流出或流入室内的热量就少,采暖,空调设备消耗的能量也就少;反之,建筑围护结构保温隔热性能差,流现或流入室内的热量就多,采暖,空调设备消耗的能量也就多。我国现行的居住建筑节能设计标准对建筑围护结构保温隔热性能提出了明确的要求,按照节能设计标准的要求去设计,新建的居住建筑就能比具有传统围护结构的同类建筑节约25%-35%的采暖,空调能耗,而且节能的潜力还十分巨大。  相似文献   

13.
以上海地区某办公建筑为例,基于EnergyPlus能耗模拟,探讨了围护结构性能提升和暖通空调系统优化这2条节能技术路径对夏热冬冷地区办公建筑降低供暖空调全年能耗的有效性.结果 表明:围护结构性能提升的节能潜力较小,经济性较差;单纯提高围护结构保温隔热性能并不能保证降低建筑年耗冷量,应综合分析全年供热供冷能耗确定围护结构...  相似文献   

14.
《Building and Environment》2005,40(4):473-480
The influence of the building's shape coefficient on annual heating and cooling energy consumption is significant, therefore, when laying down design standard for building efficiency, each country makes specific limitations to building shape coefficient. This paper takes two types of buildings with great difference of shape coefficient as the study objects and studies the influence rule of the same increase of shape coefficient on the annual cooling and heating energy consumption and its relative variation rates (RVRs) of the two buildings with the same envelope under 14 cities' climatic conditions in China, America and Europe respectively by DOE-2, DeST-h and CTM. It can be found that though the absolute increments of annual cooling and heating needs are obviously different in various cities with the same increase of shape coefficient, the annual relative variation rates (RVRs) of cooling and heating need are approximate in different cities.  相似文献   

15.
如何兼顾冬夏两季建筑供暖空调负荷和能耗,保证室内热环境质量,确定最适宜的热工特性,是长期困扰中国南方建筑围护结构热工与节能设计的难点。通过对夏热冬冷和夏热冬暖地区建筑在采暖、空调与自然通风条件下动态热过程的分析,研究了这一地区围护结构热特性与能耗的制约关系,以及对室内热环境与建筑热稳定性的作用机理。在兼顾冬季保温与夏季隔热的情况下,将建筑全年能耗作为控制目标,从室内热环境质量、节能效果、围护结构的安全性、可靠性、经济性和实用性等角度评价目前所采用的围护结构节能技术存在的问题,提出一种适宜南方气候的建筑围护结构热特性指标及构造形式。  相似文献   

16.
冬季采暖期是我国北方工业与民用建筑耗能的高峰期,由于采暖系统和建筑本身存在的问题,造成了许多热量的浪费。本文以节能为目的,提倡用户采用必要的行为节能手段,在现有的条件下,尽量减少无效的热损失。  相似文献   

17.
《Energy and Buildings》2002,34(1):25-31
The paper compares effects on thermal performance and energy use of various pre-cooling and ventilation strategies, which might be used for reducing peak power demands in typical office buildings located in moderately warm climatic regions. Simulations were performed for different features of the building envelope, and for two levels of internal heat load.Results indicate: significant reductions of required daytime peak power loads may be obtained by cooling strategies that contribute to lowering internal mass temperatures. For buildings with large internal heat loads, intensive night pre-cooling is the most effective strategy for smoothing required power loads. However, for non-loaded buildings, it largely increases total energy loads, and night-time peak power loads. Intensive night ventilation reduces required peak power loads as well as total cooling energy loads for both building types. For non-loaded buildings, it is an extremely efficient strategy, whereas the efficacy of other pre-cooling strategies is highly questionable. Further research should include secondary effects (on required peak power loads, total energy loads, and electricity consumption) as they may decrease the efficiency differences between the two strategies.  相似文献   

18.
Latent heat thermal energy storage (LHTES) is becoming more and more attractive for space heating and cooling of buildings. The application of LHTES in buildings has the following advantages: (1) the ability to narrow the gap between the peak and off-peak loads of electricity demand; (2) the ability to save operative fees by shifting the electrical consumption from peak periods to off-peak periods since the cost of electricity at night is 1/3–1/5 of that during the day; (3) the ability to utilize solar energy continuously, storing solar energy during the day, and releasing it at night, particularly for space heating in winter by reducing diurnal temperature fluctuation thus improving the degree of thermal comfort; (4) the ability to store the natural cooling by ventilation at night in summer and to release it to decrease the room temperature during the day, thus reducing the cooling load of air conditioning. This paper investigates previous work on thermal energy storage by incorporating phase change materials (PCMs) in the building envelope. The basic principle, candidate PCMs and their thermophysical properties, incorporation methods, thermal analyses of the use of PCMs in walls, floor, ceiling and window etc. and heat transfer enhancement are discussed. We show that with suitable PCMs and a suitable incorporation method with building material, LHTES can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.  相似文献   

19.
通过对重庆地区农村住宅的实地调研和对农村典型住宅室内外温度的连续监测,获得农村住宅的主要围护结构类型及典型农村住宅供暖季与空调季的室内、外热环境状况,利用重庆地区自然通风适应性热舒适性评价模型进行分析。在现有农村住宅围护结构热工性能条件下,供暖季室内温度达到舒适范围的有0 d,空调季有73 d;室内热环境状况差,冬季保温要求比夏季隔热要求更高。在供暖空调设备典型运行模式下,以调研数据为基础,借助DeST-h软件对农村典型住宅供暖空调能耗进行模拟,获得了农村住宅单位建筑面积供暖空调设备耗电量。  相似文献   

20.
Turkey has a great potential of solar energy, which is the primary source of renewable energy; however, sufficient benefit cannot be obtained from this clean energy source. In Turkey, 36% of the total energy consumed in buildings is used for heating. Due to the lack of regulations in encouraging the solar energy utilization in buildings, the heating energy consumption plays an important role in the energy economy of our country. Therefore, energy conservation methods become necessary. Energy conservation is important for the existing buildings as for the new buildings. In this study, the south facade of a flat in an existing building in Istanbul in Turkey is recommended to be renovated by the application of Trombe wall principle, which is a well-known indirect passive solar gain system. An approach is proposed for this application and the comparison of the existinsg facade with the renovated facades has been made according to thermal performances and hourly variations of wall interior temperatures. The results of this theoretical application study are given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号