首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A reliability analysis is conducted on reinforced concrete columns subjected to fire load. From an evaluation of load frequency of occurrence, load random variables are taken to be dead load, sustained live load, and fire temperature. Resistance is developed for axial capacity, with random variables taken as steel yield strength, concrete compressive strength, placement of reinforcement, and section width and height. A rational interaction model based on the Rankine approach is used to estimate column capacity as a function of fire exposure time. Various factors were considered in the analysis such as fire type, load ratio, reinforcement ratio, cover, concrete strength, load eccentricity, and other parameters. Reliability was computed from 0 to 4 h of fire exposure using Monte Carlo simulation. It was found that reliability decreased nonlinearly as a function of time, while the most significant parameters were fire type, load ratio, eccentricity, and reinforcement ratio.  相似文献   

2.
Four full-scale reinforced concrete (RC) columns with L-shaped cross-sections, four full-scale RC columns with T-shaped cross-sections, three full-scale RC columns with +-shaped cross-sections, and one full-scale RC column with a square cross-section were experimentally investigated for fire resistance following the ISO834 standard heating process. The effects of axial load ratio and fire exposure condition on failure mode, axial deformation and fire resistance of the columns were analyzed. The experimental results showed that: (a) when the axial load ratio is 0.55, the fire resistances of the columns with L-, T-, and +-shaped cross-sections subjected to fire on all sides were 60–73% that of the column with the square cross-section. (b) In the case of samples subjected to fire on all sides, the fire resistance of columns with differently-shaped cross-sections increased in the following order: L-shaped cross-section <T-shaped cross-section <+-shaped cross-section. A computer program RCSSCF was developed to calculate temperature, deformation, and fire resistance of the loaded columns with L-, T-, and +-shaped cross-sections. The results of the numerical simulation were compared with those of the full-scale fire resistance tests.  相似文献   

3.
基于简化的固体可燃物燃烧模型,利用FLUENT对单室房间进行了火灾模拟,得到了烟气温度场分布情况。在此基础上,分析对比了钢筋混凝土框架在三种不同高度的跨层发生火灾下的温度场分布及变形规律。结果表明:在相同火灾荷载的情况下,火灾发生在高度越低的跨,整个框架结构破坏坍塌的越快;底跨层受火时,柱的侧向位移最小,高跨层受火时,柱的侧向位移最大;混凝土板是最早遭到破坏的,但混凝土柱的破坏才会导致整个框架的失稳坍塌。  相似文献   

4.
We studied the behavior and residual structural capacity of reinforced concrete chimneys subjected to an uncontrolled fire. We used a combination of a heat transfer finite element model-to obtain the temporal distributions of temperature during the fire event-and the structural model of concrete chimney design provided by the American Concrete Institute (ACI 307-08). This approach allows estimating the reduction in the vertical (axial) strength and moment strength of the chimney both during a fire and post-fire, and gives a direct estimate of the reduction in the safety factors of the concrete chimney. Using this method, we examined the impact of various design parameters on the residual structural capacity of a concrete chimney subjected to an internal fire. An iterative finite element method was also presented as an alternative to the ACI 307 calculations. Moreover, finite element calculations were used to study the role of thermal stresses on the axial strength of the chimney during fire. Our study provides insight into possible failure mechanisms of concrete chimneys damaged due to fire and could suggest possible approaches for minimizing the risk of chimney failure due to an uncontrolled fire.  相似文献   

5.
In this paper a robust model is presented based on the previous layer procedure developed by the author to also take into account the effects of concrete spalling on the behaviour of concrete slabs under fire conditions. In this study, a detailed analysis of a uniformly loaded reinforced concrete slab subject to different degrees of concrete spalling under a standard fire regime is first carried out. Further, a series of analysis of floor slabs with different degrees of concrete spalling is also performed on a generic reinforced concrete building. A total of 16 cases have been analysed using different degrees of spalling on the slabs, with different extents and positions of localised fire compartments. It is clear that adjacent cool structures provide considerable thermal restraint to the floor slabs within the fire compartment. And it is evident that the compressive membrane force within the slabs is a major player in reducing the impact of concrete spalling on the structural behaviour of floor slabs in fire.  相似文献   

6.
利用SAFIR有限元分析软件对火灾下钢筋混凝土柱的温度场进行分析和计算,探讨高温下保护层厚度、截面周长、受火时间和截面配筋率对柱截面温度场的分布规律,为进一步认识钢筋混凝土柱的高温力学性能创造条件,并为开展火灾后钢筋混凝土柱的修复加固提供理论依据。  相似文献   

7.
An approach for evaluating the fire resistance of reinforced concrete (RC) beams is presented in this paper. A macroscopic finite element model is applied to study the influence of various parameters on the fire resistance of RC beams. Data from parametric studies is utilized to develop a simplified expression for evaluating the fire resistance of an RC beam as a function of influencing parameters. The validity of the proposed approach is established by comparing the fire resistance predictions with those obtained from finite element studies as well as from fire resistance tests. Predictions from the proposed equation are also compared with fire resistance estimates from current codes of practice. The applicability of the approach to design situations is illustrated through a numerical example. The proposed rational approach expresses fire resistance in terms of conventional structural and material design parameters, and thus facilitates easy evaluation of fire resistance. The proposed approach provides better estimates than those from current codes of practice and thus can be used to evaluate the fire resistance of RC beams with an accuracy that is adequate for design purposes.  相似文献   

8.
An efficient nonlinear 3D finite element model has been developed to investigate the structural performance of composite slim floor steel beams with deep profiled steel decking under fire conditions. The composite steel beams were unprotected simply supported with different cross-sectional dimensions, structural steel sections, load ratios during fire and were subjected to different fire scenarios. The nonlinear material properties of steel, composite slim concrete floor and reinforcement bars were incorporated in the model at ambient and elevated temperatures. The interface between the structural steel section and composite slim concrete floor was also considered, allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the composite beam. Furthermore the thermal properties of the interface were included in the finite element analysis. The finite element model has been validated against published fire tests on unprotected composite slim floor steel beams. The time–temperature relationships, deformed shapes at failure, time–vertical displacement relationships, failure modes and fire resistances of the composite steel beams were evaluated by the finite element model. Comparisons between predicted behaviour and that recorded in fire tests have shown that the finite element model can accurately predict the behaviour of the composite steel beams under fire conditions. Furthermore, the variables that influence the fire resistance and behaviour of the unprotected composite slim floor steel beams, comprising different load ratios during fire, cross-section geometries, beam length and fire scenarios, were investigated in parametric studies. It is shown that the failure of the composite beams under fire conditions occurred for the standard fire curve, but did not occur for the natural fires. The use of high strength structural steel considerably limited the vertical displacements after fire exposure. It is also shown that presence of additional top reinforcement mesh is necessary for composite beams exposed to short hot natural fires. The fire resistances of the composite beams obtained from the finite element analyses were compared with the design values obtained from the Eurocode 4 for composite beams at elevated temperatures. It is shown that the EC4 predictions are generally conservative for the design of composite slim floor steel beams heated using different fire scenarios.  相似文献   

9.
三面受火钢筋混凝土梁温度场非线性分析   总被引:5,自引:3,他引:5  
根据三面受火钢筋混凝土梁离散体积单元的能量守恒原理,建立了有限差分平衡方程,在合理确定混凝土热工参数基础上,采用增大混凝土质量热容的方法,考虑混凝土中自由水与结合水的物理化学反应对混凝土温度场的影响。通过编制三面受火钢筋混凝土梁截面温度场非线性有限差分程序,并结合火灾情况下钢筋混凝土梁温度场的试验结果,合理地确定了混凝土质量热容放大系数和混凝土表面换热系数的计算式。结果表明:三面受火钢筋混凝土梁温度场的计算结果与试验结果符合较好,为进一步研究火灾情况下钢筋混凝土梁力学性能和耐火极限提供了条件。  相似文献   

10.
为研究火灾下钢筋混凝土框架结构的受力机理,采用梁单元建立了钢筋混凝土框架结构耐火性能有限元计算模型,考虑火灾位置、柱轴压比和梁配筋率等参数的影响,对火灾下钢筋混凝土框架结构的变形、内力重分布、破坏形态以及耐火极限进行了参数分析。分析结果表明,火灾下框架结构出现了整体破坏形态和局部破坏形态两种典型的破坏形态:当柱轴压比较小时,框架出现受火梁破坏导致的框架局部破坏形态;当柱轴压比和梁配筋率均较大时,框架出现受火中柱和受火边柱破坏导致的框架整体破坏形态,整体破坏形态为连续性倒塌破坏。在框架局部破坏形态条件下,三面受火梁在框架竖向分布位置不同,受约束作用不同,框架的耐火极限亦不同;而在框架整体破坏条件下,柱轴压比越大,耐火极限越小。  相似文献   

11.
Experiments on the fire resistance of 15 prestressed concrete (PC) simply-supported slabs and 9 two-span unbonded PC continuous slabs were conducted. Preliminary conclusions drawn are that concrete spalls more easily or more seriously when the compressive stress is higher or the tensile stress is lower on the surface exposed to fire, and when the strength and water content of concrete at ambient temperature are higher. Based on the test results, an expression for the top envelope surface of the concrete spalling is presented by taking the average standard concrete cube strength at ambient temperature as the x-axis, the concrete water content at ambient temperature as the y-axis, and the normal stress level of concrete extreme fiber in the pre-compression zone of a slab at elevated temperature as the z-axis. To facilitate design and application, an expression for the top envelope surface of the concrete spalling is presented by keeping the x-axis and the y-axis the same, and the normal stress level of concrete extreme fiber in the pre-compression zone of a slab at ambient temperature as the z-axis.  相似文献   

12.
冷弯薄壁槽钢-混凝土组合梁受火试验研究   总被引:1,自引:0,他引:1  
对5个冷弯薄壁槽钢-混凝土组合梁试件进行在ISO-834标准火灾下的受火试验。试验中考虑了荷载水平、防火涂层厚度和槽钢截面高度等参数的影响。试验结果表明:荷载水平、防火涂层厚度和槽钢截面高度是影响组合梁抗火性能的主要因素,其他因素影响很小;在ISO-834标准火灾下,以跨中挠度δ=l/25作为组合梁达到耐火极限的判别标准是合适的;填充混凝土可有效提高组合梁的整体刚度和延性,使其在高温下直至破坏仍可保持完整性,没有出现高温局部屈曲现象;在槽钢上直接涂刷防火涂层不能保证其与槽钢表面的紧密结合,需要改进组合梁的防火涂层施工工艺;试验结果验证了有限元分析结果的正确性。  相似文献   

13.
为了研究型钢混凝土框架整体结构的耐火性能,为其抗火设计提供参考,采用受火楼层建立精细化有限元计算模型、非受火楼层建立梁单元计算模型的方法,建立了型钢混凝土框架整体结构的耐火性能计算模型。考虑火灾位置、荷载分布形式、柱轴压比等参数的影响,对火灾下型钢混凝土框架整体结构的变形规律、承载机制、破坏形态以及耐火极限进行参数分析。分析结果表明:火灾下框架结构出现了整体破坏和局部破坏两种典型的破坏形态,受火构件受到的约束作用对其耐火性能有较大的影响;在局部破坏形态中,由于受热膨胀,火灾下框架梁首先出现了较大的轴压力,受火框架梁处于压弯受力状态;之后,框架梁出现了悬链线效应,轴力对框架梁的受力状态有较大影响;在整体破坏形态中,根据轴压比及荷载分布形式的不同,框架出现了中柱破坏和边柱破坏两种典型破坏形态,同时,随楼层受火位置的升高,柱的轴压比减小,框架结构的耐火极限增加。  相似文献   

14.
The National Institute of Standards and Technology (NIST) and the Center for Better Living (CBL) have formed an international collaboration to assess the performance and failure mechanisms of gypsum wall assemblies under real fires/furnace conditions. In an effort to compile an experimental database necessary to validate models that could be used to predict their performance and ultimate failure under various design fires, a full scale test was conducted in the Large Fire Laboratory (LFL) at NIST. This paper provides a valuable experimental data set on the performance of a full scale loaded gypsum steel stud assembly exposed to an intense full scale compartment fire.  相似文献   

15.
通过对钢筋混凝土框架结构火灾环境模拟,分析了框架结构内部的温度场变化过程,并对火灾下框架结构的力学性能进行了全过程分析,真正实现了框架结构火灾反应的全过程分析,为框架的抗火设计提供理论依据。  相似文献   

16.
J. Ding  Y.C. Wang   《Engineering Structures》2007,29(12):3485-3502
This paper presents experimental results of structural fire behaviour of steel beam to concrete filled tubular (CFT) column assemblies using different types of joints. The joint types include fin plate, end plate, reverse channel and T-stub. The structural assembly was in the form of a “rugby goalpost”. In each test, loads were applied to the beam and then the structural assembly was exposed to the standard fire condition in a furnace while maintaining the applied loads. In total, 10 tests were carried out. In eight of the 10 tests, fire exposure continued until termination of the fire test, which was mainly caused by structural failure in the joints under tension when the beam was clearly in substantial catenary action. In the other two tests (one using fin plates and one using reverse channels), fire exposure stopped and forced cooling started when the beam was near a state of pure bending and just about to enter into catenary action. The results of the experiments indicate that even the relatively simple joints used in this study were able to allow the beams to develop substantial catenary action so that the final failure times and beam temperatures of the assemblies were much higher than those obtained by assuming the beams in pure bending. At termination of the tests, the beams reached very high deflections (about span/5), even then failure of the assemblies always occurred in the joints. Therefore, to enable the beams to reach their full potential in catenary action, the joints should be made to be much stronger. The results also indicate that reverse channel connection has the potential to be developed into a robust connection characterised by high stiffness, strength, rotational capacity and ductility. The beams in the two cooling tests developed high tension forces, however there was no structural failure in the assemblies. The principal aim of this paper is to present experimental results of joint behaviour in fire (which until now is lacking) to enable development of better understanding and rational design methods for robust construction of joints to resist extreme fire attack.  相似文献   

17.
This paper presents a lifetime reliability-based approach to the optimization of reinforced concrete (RC) cross-sections in an aggressive environment. The lifetime structural performance is evaluated by using a general methodology for time-variant analysis of RC structures subjected to diffusive attacks from aggressive agents with corrosion of the reinforcement. The lifetime probabilistic optimization is formulated at the cross-sectional level and is aimed to minimize the material cost under a time-dependent constraint on the structural reliability. The optimization problem is solved by combining a discrete gradient-based optimization method with a Monte Carlo simulation. The obtained results demonstrate that in a lifetime-oriented design the amount and location of the steel reinforcement and the value of the concrete cover play a crucial role for the optimal achievement of the desired lifetime structural performance.  相似文献   

18.
某商城火灾后钢筋砼结构损伤分析   总被引:1,自引:0,他引:1  
对某商城火灾后钢筋砼结构的损伤情况进行综合分析和统计,采用超声-回弹法研究高温后混凝土的残余强度,分析了其结构损伤程度包括残余强度、炭化深度随火灾延烧时间的变化规律,对火灾后混凝土强度的评估分析具有一定的参考价值。  相似文献   

19.
陈全杰  陈伟  刘虹  文波 《消防科学与技术》2021,40(10):1455-1461
为明确混凝土框架结构受地震破坏造成的几何损伤对其遭受地震次生火灾后耐火性能退化规律的影响,分析总结震害资料以及抗震实验记录,将混凝土保护层剥落、残余变形作为混凝土结构的震损形式,通过数据统计与回归分析的方法确定损伤尺寸,从而建立了两层两跨震损钢筋混凝土平面框架有限元模型,得到了框架结构变形特点和受火位置、轴压比、层间位移角对平面框架结构耐火极限的影响规律。  相似文献   

20.
为分析和模拟多层混凝土框架结构在火灾下的反应规律及其破坏过程,基于建筑结构分析中常用的纤维梁单元,建立了钢筋混凝土梁、柱构件的火灾破坏数值模型。模型将构件截面划分成多个纤维,可以考虑构件截面的不均匀温度场分布以及材料非线性和几何非线性问题。对单层单跨混凝土框架进行火灾反应分析,并与试验结果进行比较,验证了此数值模型的准确性。通过对多层框架进行火灾反应模拟,比较不同火灾场景的模拟结果,分析其反应规律以及破坏过程。结果表明,纤维梁单元模型可以较好地模拟钢筋混凝土结构的受火破坏过程,并且火灾发生的位置不同,结构的破坏机制也不同,一定条件下蔓延的火灾比不蔓延的火灾对多层混凝土框架结构的破坏性更大。分析结果可以为实际结构的防火设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号