首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of factors affect the energy and CO2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO2 emission to the atmosphere.  相似文献   

2.
In this study the life cycle primary energy use and carbon dioxide (CO2) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO2 emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO2 emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO2 emission. Excluding household tap water and electricity, a negative life cycle net CO2 emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings.  相似文献   

3.
Cluster analysis of summer and winter discomfort in terms of heat and cold stresses based on 102-year (1901-2002) weather data in China was conducted. Five bioclimate zones were identified. These were compared with the corresponding thermal and solar zoning classifications. Bio-I and Bio-II tended to locate largely within severe cold and cold climates in the north with excellent solar availability (annual clearness index Kt generally exceeding 0.5). Bio-III and Bio-IV covered mostly the hot summer and cold winter and mild climate zones. Despite the relatively low Kt in winter, passive solar heating should be able to meet a significant proportion of the heating requirements. Bio-V covered the hot summer and warmer winter region, where heat stress and hence cooling requirement dominated. Decreasing trends in the zone-average annual cumulative cold stress during the 102-year period were observed for all five zones. There was, however, no distinct pattern for the heat stress and the changes tended to be more subtle. These indicate that climate change during the 20th century affected winter discomfort (especially in colder climates in the north) more than the summer discomfort. This could have significant implications for energy use in buildings if such trends persist.  相似文献   

4.
Energy benchmarking is useful for understanding and enhancing building performance. The aim of this research is to develop an object-oriented energy benchmarking method for the evaluation of energy performance in buildings. Statistical analysis of the four-year monitored energy consumption data for office buildings was conducted. The results show that the energy use intensity follows the lognormal distribution with the Shapiro–Wilk normality test. Based on the lognormal distribution, the energy rating system for office buildings has been established. An object-oriented energy use intensity quota determination model has been developed. This research provides practical tools that enable decision-makers to evaluate a building's energy performance and determine the energy benchmark.  相似文献   

5.
This study investigated the potential impact of climate change on the heating and cooling (H/C) energy requirements of residential houses in five regional climates varying from cold to hot humid in Australia. Nine General Circulation Models (GCMs) under three carbon emission scenarios were applied to project the local climate. It was found that significant climate change impact on H/C energy requirements may occur within the lifespan of existing housing stock. The total H/C energy requirement of newly constructed 5 star houses is projected to vary significantly in the range of −26% to 101% by 2050 and −48% to 350% by 2100 given the A1B, A1FI and 550 ppm stabilisation emission scenarios, dependent on the existing regional climate. In terms of percentage change, houses in an H/C balanced temperate climate such as Sydney is found to be the most sensitive to climate change, potentially posing more pressures on the capacity of local energy supply. It was also found that energy efficient or high star rating houses may experience less absolute changes in energy requirement. However, they appear to experience higher percentage changes in the total H/C energy requirement. Especially in the regions with an H/C balanced temperate climate such as Sydney, the increase in the total H/C energy requirement is projected up to 120% and 530% for a 7 star house when the global temperature increases 2 °C and 5 °C respectively. The high sensitivity to global warming may need to be considered in the planning of future energy requirement for energy efficient buildings.  相似文献   

6.
This study explores the uncertainties and sensitivities in the prediction of the thermal performance of buildings under climate change. This type of analysis is key to the assessment of the adaptability and resilience of buildings to changing climate conditions. The paper presents a comprehensive overview of the key methodological steps needed for a probabilistic prediction of building performance in the long term future (50 to 80 years). The approach propagates uncertainties in climate change predictions as well as the uncertainties related to interventions in building fabric and systems.A case study focussing on an air-conditioned university building at the campus of the authors is presented in order to demonstrate the methodology. This employs the most recent probabilistic climate change projections for the United Kingdom (UKCP09 dataset) and takes into account facility management uncertainties when exploring uncertainties in the prediction of heating energy, cooling energy, and carbon emissions.  相似文献   

7.
The concern on climate change leads to growing demand for minimization of energy use. As building is one of the largest energy consuming sectors, it is essential to study the impact of climate change on building energy performance. In this regard, building energy simulation software is a useful tool. A set of appropriate typical weather files is one of the key factors towards successful building energy simulation. This paper reports the work of developing a set of weather data files for subtropical Hong Kong, taking into the effect of future climate change. Projected monthly mean climate changes from a selected General Circulation Model for three future periods under two emission scenarios were integrated into an existing typical meteorological year weather file by a morphing method. Through this work, six sets of future weather files for subtropical Hong Kong were produced. A typical office building and a residential flat were modeled using building simulation program EnergyPlus. Hourly building energy simulations were carried out. The simulated results indicate that there will be substantial increase in A/C energy consumption under the impact of future climate change, ranging from 2.6% to 14.3% and from 3.7% to 24% for office building and residential flat, respectively.  相似文献   

8.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory.  相似文献   

9.
Principal component analysis of dry-bulb temperature, wet-bulb temperature and global solar radiation was considered, and a new climatic index (principal component Z) determined for two emissions scenarios – low and medium forcing. Multi-year building energy simulations were conducted for generic air-conditioned office buildings in Harbin, Beijing, Shanghai, Kunming and Hong Kong, representing the five major architectural climates in China. Regression models were developed to correlate the simulated monthly heating and cooling loads and building energy use with the corresponding Z. The coefficient of determination (R2) was largely within 0.78–0.99, indicating strong correlation. A decreasing trend of heating load and an increasing trend of cooling load due to climate change in future years were observed. For low forcing, the overall impact on the total building energy use would vary from 4.2% reduction in severe cold Harbin (heating-dominated) in the north to 4.3% increase in subtropical Hong Kong (cooling-dominated) in the south. In Beijing and Shanghai where heating and cooling are both important, the average annual building energy use in 2001–2100 would only be about 0.8% and 0.7% higher than that in 1971–2000, respectively.  相似文献   

10.
While most studies focus on energy savings during occupied hours, this paper shows the shocking quantities of energy wasted during non-occupied hours in commercial buildings. At least five detailed energy audits were carried out in the hot and dry climates of Botswana and South Africa. The work shows that more energy is used during non-working hours (56%) than during working hours (44%). This arises largely from occupants’ behaviour of leaving lights and equipment on at the end of the day, and partly due to poor zoning and controls. There is a crying need for building occupants to learn to switch off what they do not use. The golden rule is: “If you don’t need it, don’t use it!” This is the simplest and cheapest lesson with amongst the biggest savings. Apart from the above, the work also contributes to several other fields of scientific research: it helps in development of benchmarks from sub-hourly field data; it contributes apportionment of energy amongst sub-systems of HVAC, lighting and office equipment; it provides a picture from cooling dominated climates, which normally differs from the largely researched heating dominated climates; it contributes to development of diversity profiles necessary for improvement of simulation accuracy.  相似文献   

11.
In this study, the material-based energy use and carbon emission over the life cycle of a bamboo-structure residential building prototype with innovative insulation technologies are analyzed. In comparison with a typical brick-concrete building, the bamboo-structure building requires less energy and emits less carbon dioxide to meet the identical functional requirements, i.e., envelope insulation and structure supporting. In order to systematically assess the energy use and carbon emission, several scenarios are designed based on the LEED standard and the technical potentials. The results indicate that there is a potential to reduce 11.0% (18.5%) of the embodied energy (carbon) for the use of recycled-content building materials and 51.3% (69.2%) for the recycling of construction and demolition waste, respectively. However, the practical effect of the potentials varies significantly depending on project management levels and available technologies in the current market. The analysis provides an insight into the assessment of the material-based energy use and carbon emission over the life cycle of a building.  相似文献   

12.
13.
One of the cheapest ways to reduce CO2 emissions is thermal renovation of existing homes. Germany is a world leader in this project, with a strict building code, generous state subsidies, and an advanced renovation infrastructure. The effects of its policies are here explored in the light of progressive tightening of the building code, and the strict criteria for subsidies. Data on costs and outcomes of residential building renovations are presented from published reports on renovation projects, and cross-checked with projects investigated directly. Comparisons are made in terms of euros invested for every kilowatt hour of heating energy saved over the lifetime of the renovations, for standards ranging from 150 kWh (the lowest standard) to 15 kWh (the highest) of primary energy use per square metre of floor area per year. It is found that the lowest standard is an order of magnitude more cost-effective than the highest, in terms of both energy saved per euro invested, and return on investment over the lifetime of the renovations, regardless of fuel prices. It is argued that this throws into question Germany's policy of progressively regulating for higher renovation standards, and offering subsidies only for projects that go beyond the minimum standard.  相似文献   

14.
Jordan heavily relies on imported oil and gas for meeting its energy need as the same time the construction sector consumed more than half of the total electricity consumption in Jordan in 2008. In order to provide the occupants with thermal comfort at least cost, applying energy saving measures into early design stage can be significant to achieve this goal.This paper discusses an assessment of best orientation of the building, windows size, thermal insulation thickness from energetic, economic and environmental point of view for typical residential building located in Mediterranean region. The results show that about 27.59% of annual energy consumption can be saved by choosing best orientation, optimum size of windows and shading device, and optimum insulation thickness. The Life Cycle Cost (LCC) is reduced by 11.94%. The specific energy consumption per square meter is 64 kWh/m2 a.  相似文献   

15.
Gori R  Jiang LM  Sobhani R  Rosso D 《Water research》2011,45(18):5858-5872
Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO2 direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required.  相似文献   

16.
From energy statistics (primary energy consumption) and a few Census data (residential buildings floor area) the average specific primary energy use (kWh/m2) of a territorial (Regional or National) building stock may be easily evaluated. However, can we achieve a deeper insight on this building stock using basically the same data bases? This is the question which this paper is aiming at, and the results is an analytical methodology to determine the Statistical Distribution Of residential Buildings according to primary Energy consumption for heating purposes (E-SDOB) at a Regional or National scale. This tool may allow the legislator to define a performance scale for building energy certification, to introduce mandatory measures and incentives for building energy retrofits, to evaluate the potential of new technologies, etc. The main source of data required for determining E-SDOB is still the National Census, but it has to be integrated by energy standards and laws, literature and a few data taken from the authors’ experience and in situ analysis. The results obtained have been compared with those derived from two Italian Regional (Piedmont and Lombardy) energy statistics, with excellent agreement.  相似文献   

17.
The process of building labeling and certification in accordance to the provisions of the European Directive on the Energy Performance of Buildings (EPBD) constitutes a unique opportunity for collecting information on the characteristics of the building stock and its energy performance on a national and European level. Thus, there is a need to handle data from a large stock of buildings and to be able to analyse information and extract practical trends and benchmarks. Stakeholders and technical managers who oversee a number of buildings experience similar needs in order to collect, organize and monitor the energy performance of a large pool of buildings. To facilitate these efforts, a common evaluation database and complimentary software for its exploitation have been developed in the frame of a European project.This paper presents an overview of the database and its available tools, and the main results from a case study on Hellenic buildings that reveals relevant characteristics. The Hellenic database included a sample of 250 buildings from different regions in Greece, with a breakdown that is representative of the national building stock. The main results focus on the buildings’ energy performance, thermal envelope characteristics and the exploitation of solar thermal energy.  相似文献   

18.
This study examined whether simplified life cycle-based calculations of climate change contributions can provide better decision support for building design. Contributions to climate change from a newly built office building in Gävle, Sweden, were studied from a life cycle perspective as a basis for improvements. A basic climate and energy calculation tool for buildings developed in the European project ENSLIC was used. The study also examined the relative impacts from building material production and building operation, as well as the relative importance of the impact contributions from these two life cycle stages at various conditions.  相似文献   

19.
The recently published building energy conservation regulation of China (GB50189-2005, 2005 [1]) was compared with the latest UK building energy conservation regulation (Part L) (Building Regulation Approved Document L2A, 2006 [2]). The UK regulation appeared stricter in its requirements and standards than the Chinese regulation. In two case studies, the design of a sample building is altered to fulfil the minimum requirements of the two regulations. The energy consumption and Carbon print of the virtual building under the two set of regulations are estimated by computer based models in the two case studies based on a building in the Cold regions. The building under the UK regulation showed higher energy efficiency and less Carbon emissions per year. The high level estimate in the case studies discovered a potential energy savings of 29% by strengthening the design requirements in the Chinese regulation to the UK level. The improvement on energy efficiency of buildings can be achieved in strengthening the proactive design aspects on building envelope, efficient HVAC, lighting and lighting control system. The software used was SBEM which is the default tool in the UK Part L regulation.  相似文献   

20.
The main objective of this study is to investigate the energetic and exergetic performances of a latent energy storage system in both charging (solidification) and discharging (melting) processes. A shell-and-tube TES unit was designed, constructed and tested in Dokuz Eylul University, Izmir, Turkey. This experimental unit basically consisted of a heat exchanger section, a measurement system and flow control systems. For the charging mode, the inlet temperatures varied to be −5 °C, −10 °C and −15 °C, while the volumetric flow rates changed to be 2 l/min, 4 l/min and 8 l/min. The experiments were performed for three different tube materials, copper, steel and PE32 and two various shell diameters of 114 mm and 190 mm to investigate the tube material and shell diameter effects on energetic and exergetic efficiencies. It may be concluded that for the charging period, the exergetic efficiency increased with the increase in the inlet temperature and flow rate. For discharging period, irreversibility increased as the temperature difference between the melting temperature of the PCM and the inlet temperature of the heat transfer fluid (HTF) increased and hence the exergy efficiency increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号