首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel PtRu catalyst consisting of a Ru-rich core and a Pt-rich shell was synthesized using a two-step microwave irradiation technique. The synthesized PtRu/C catalysts were characterized by X-ray diffraction (XRD), extended X-ray absorption finestructure (EXAFS), transmission electron microscopy (TEM) as well as energy dispersive X-ray spectrometry (EDXS). The produced PtRu/C catalysts showed identical crystalline structure and diffraction peaks to Pt itself, but with negligible higher 2 shift degrees, indicating the formation of a specific composite structure rather than alloy formation. This novel structure of PtRu/C catalyst was also further verified via X-ray absorption spectroscopy. The particle size of PtRu catalysts identified by TEM was less than 5 nm. In order to investigate the CO tolerance in the hydrogen oxidation reaction (HOR), H2 streams with six different concentrations of CO (0, 10, 50, 100, 300, and 500 ppm) were used. The electrocatalytic activity thus obtained was not only better than that of Pt/C catalyst in HOR, but also showed a better CO tolerance in various CO concentrations.  相似文献   

2.
This paper reports use of an ultrasonic spray for producing ultra-low Pt load membrane electrode assemblies (MEAs) with the catalyst coated membrane (CCM) fabrication technique. Anode Pt loading optimization and rough cathode Pt loading were investigated in the first stage of this research. Accurate cathode Pt coating with catalyst ink using the ultrasonic spray method was investigated in the second stage. It was found that 0.272 mgPt/cm2 showed the best observed performance for a 33 wt% Nafion CCM when it was ultrasonically spray coated with SGL 24BC, a Sigracet manufactured gas diffusion layer (GDL). Two different loadings (0.232 and 0.155 mgPt/cm2) exposed to 600 mA/cm2 showed cathode power mass densities of 1.69 and 2.36 W/mgPt, respectively. This paper presents impressive cathode mass power density and high fuel cell performance using air as the oxidant and operated at ambient pressure.  相似文献   

3.
In this study, thin-film Pt catalysts with ultra-low metal loadings (ranging from 1 to 200 μg cm−2) were prepared by magnetron sputtering onto various carbon-based substrates. Performance of these catalysts acting as anode, cathode, or both electrodes in a proton exchange membrane fuel cell (PEMFC) was investigated in H2/O2 and H2/air mode. As base substrates we used standard microporous layers comprising carbon nanoparticles with polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) supported on a gas diffusion layer. Some substrates were further modified by magnetron sputtering of carbon in N2 atmosphere (leading to CNx) followed by simultaneous plasma etching and cerium oxide deposition. The CNx structure exhibits higher resistance to electrochemical etching as compared to pure carbon as was determined by mass spectrometry analysis of PEMFC exhaust at different cell potentials for both sides of PEMFC. The role of platinum content and membrane thickness was investigated with the above four different combinations of ionomer-free carbon-based substrates. The results were compared with a series of benchmark electrodes made from commercially available state-of-the-art Pt/C catalysts. It was demonstrated that the platinum utilization in PEMFC with magnetron sputtered thin-film Pt electrodes can be up to 2 orders of magnitude higher than with the standard Pt/C catalysts while keeping the similar power efficiency and long-term stability.  相似文献   

4.
This study provides comprehensive energy, exergy, and economic evaluations and optimizations of a novel integrated fuel cell/geothermal-based energy system simultaneously generating cooling and electricity. The system is empowered by geothermal energy and the electricity is mainly produced by a dual organic cycle. A proton exchange membrane electrolyzer is employed to generate the oxygen and hydrogen consumed by a proton exchange membrane fuel cell utilized to support the network during consumption peak periods. This fuel cell can be also used for supplying the electricity demanded by the network to satisfy the loads at different times. All the simulations are conducted using Engineering Equation Solver software. To optimize the system, a multi-objective optimization method based on genetic algorithm is applied in MATLAB software. The objective functions are minimized cost rate and maximized exergy efficiency. The optimum values of exergy efficiency and cost rate are found to be 62.19% and 18.55$/h, respectively. Additionally, the results reveal that combining a fuel cell and an electrolyzer can be an effective solution when it comes to electricity consumption management during peak load and low load periods.  相似文献   

5.
Self-regulation capability of the open-cathode PEMFC generally means that the stack itself can adjust its state to response to different operating conditions to achieve better performance when the external control strategy remains unchanged. In this paper, self-regulating capability of the stack are analyzed when its cooling fan works under blow or suction mode at different voltages. The result of output voltage shows that the stack achieves better self-regulation when the fan operates at 8.5 V in both blow mode and suction mode. Analysis of impedance spectra reveals that the stack can realize self-regulating function by adjusting activation resistance and ohmic resistance, and the cathode activation resistance is dominant. Furthermore, the result of a cycle load test indicates that the stack can better reflect the self-regulating capability in fan suction mode than in blow mode, and the stack can achieve better water and heat regulation in suction mode. Finally, according to the air velocity distribution and temperature change, it is found that self-regulating capability in suction mode play a better role due to more uniform heat remove. A suitable fan operating voltage and mode are critical for the self-regulating capability of the open-cathode PEMFC stack to maintain a water-heat balance.  相似文献   

6.
The Nafion loading in multi-walled carbon nanotube (MWCNT) composites with Nafion used as Pt support in the oxygen reduction reaction (ORR) has been studied. We varied the amount of Nafion in these composites and added a Pt loading of 0.3 mg cm−2 to the catalyst layer. The performance of these electrodes in the ORR was measured with linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), chronoamperometry, inductive coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In addition, we compared the performance of the MWCNTs as Pt supports with those of the composites. Our results indicate that the composites are better Pt supports in comparison with MWCNT.  相似文献   

7.
The flow phenomenon in the fuel-cell channels is difficult to understand and predict because of the two-phase flow. Proton exchange membrane fuel cells (PEMFCs) with transparent windows are widely used for visualizing the two-phase flow in the channels. In this paper, the visualization of the two-phase flow in the channels was accomplished under various current-density conditions using a transparent cell. The visualization of the single serpentine flow field clearly reveals that anode flooding is more severe than cathode flooding. The main cause for anode flooding is a low gas-flow rate in the channel because of the absence of the carrier gas. In addition, flooding is more significant under a low current-density condition than under a high current-density condition; under the latter condition, there is significantly more reaction heat that prevents flooding. The flow phenomena in the PEMFC stack were also visualized by electrically connecting three transparent cells in series and supplying fuel to each cell from a manifold. Sudden voltage drops and overshoots were detected, and the voltage fluctuations were found to be strongly related to flooding.  相似文献   

8.
Common carbon-blacks have shown insufficient stability as cathodic catalyst supports for proton exchange membrane fuel cells (PEMFCs). In this regard, alternative supports have been proposed and, specifically graphene or reduced graphene oxide (rGO), have attracted special attention. Herein, a set of electrocatalysts using reduced graphene oxide (rGO) as support is synthetized by a modified polyol method. The influence of Pt loading on the support is studied and compared with conventional supports, considering Pt particle morphologies and oxygen reduction reaction (ORR) performance in rotating disk electrode (RDE). Despite Pt average particle size typically increases with the Pt loading, 30 wt% of Pt on rGO is the optimal Pt loading, yielding the highest ORR activity among the rGO-supported electrocatalysts. These results show that both Pt loading and type of support greatly impact on the morphology and electrochemical performance of Pt nanoparticles.  相似文献   

9.
This study presents the influence of acidity on the corrosion performance and surface properties of AISI 304 stainless steel (SS304) in the simulated cathode condition of proton exchange membrane fuel cells (PEMFC) with various concentrations of H2SO4. The electrochemical tests indicate that the corrosion resistance of SS304 samples decreases gradually with the solution acidity ascending, but the stable current densities (0.043–0.547 μA cm?2) in the simulated solutions after polarization (0.6 V, 5 h) are all lower than that of the relevant DOE 2025 target (icorr < 1 μA cm?2). Obvious pitting corrosion occur in the solutions with H2SO4 concentration higher than 10?3 M. The surface wettability and interfacial contact resistance (ICR) of the potentiostatically polarized SS304 show an upward trend with the solution acidity increasing, and whether the SS304 samples are polarized or not, their ICR (0.274–1.232 Ω cm2) is far higher than the latest DOE 2025 technical target (<0.01 Ω cm2). The results reveal that surface modification is indispensable for SS304 as bipolar plates, and more attention should be paid to possessing high and stable pitting resistance, hydrophobicity, and interfacial conductivity in an acid environment.  相似文献   

10.
Here we report a composite electrolyte membrane of Polybenzimidazole (PBI) with Phosphosilicate nano-network (PPSN) for enhanced proton conductivity, durability and power generation of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Solid state proton conductor three dimensional Phosphosilicate nano-network (average particle size <10 nm) is synthesized using easy and low-cost sol gel method followed by ball milling and composited with PBI at different loading employing methane sulfonic acid (MSA) as solvent. The electrolyte membrane is characterized using FESEM, XRD, FTIR, TGA; proton conductivity, ion exchange capacity, water uptake and acid doping level, chemical stability and mechanical yield strength are measured and the membrane is tested for HT-PEMFC application. Property and performance mapping reveals that with 10% PPSN loading, composite (PPSN-PBI-10) membrane offers the maximum enhancement of all properties and power generation of HT-PEMFC, while beyond a critical loading (~22%) properties and performance deteriorate below that of pristine PBI. Using optimum loading of PPSN, compared to pristine PBI, a remarkable rise in water uptake and acid doping level is achieved that facilitates proton conduction; also in spite of the presence of Phosphoric acid in the PPSN filler, the maximum 47.5% enhancement of ultimate strength is attained. The performance of HT-PEMFC using composite PPSN-PBI unveil that almost 2 times (100%) enhancement of peak power generation (~0.73 W cm?2) is achieved using PPSN-PBI-10 at 170 °C operating temperature compared to pristine PBI. This may be attributed to the facilitated proton conduction through the extended tunnelling network offered by PPSN. Incorporation of PPSN improves the durability; over 48 h only 16% decay in voltage is noticed using PPSN-PBI-10 membrane which is remarkably lower than the 31% decay of pristine PBI membrane.  相似文献   

11.
Data driven NARMAX modeling for PEMFC air compressor   总被引:1,自引:0,他引:1  
Air compressor of proton exchange membrane fuel cell (PEMFC) system is usually nonlinear and strong coupled. It is difficult to establish a online optimization oriented model. In order to solve this problem, this paper proposed a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model for air compressor of PEMFC system. The NARMAX model is an equivalent time-varying linear model, and the time-varying parameters are identified by recurrent neural network (RNN). Simulation results show that the proposed method has small fitting error, the error of air flow and pressure ratio approximate zero, while the mean square error (MSE) of air flow and pressure ratio are 1.5171e-07 and 6.3767e-05, respectively. Therefore, the established air compressor model is accurate and effective.  相似文献   

12.
A hybrid model composed of a least square support vector machine (LS-SVM) model and a pressure-incremental model is developed to dispose operation conditions of current, temperature, cathode and anode gas pressures, which have major impacts on a proton exchange membrane fuel cell's (PEMFC) performance. The LS-SVM model is built to incorporate current and temperature and a particle swarm optimization (PSO) algorithm is used to improve its performance. The optimized LS-SVM model fits the experimental data well, with a mean squared error of 0.0002 and a squared correlation coefficient of 99.98%. While a pressure-incremental model with only one empirical coefficient is constructed to for anode and cathode pressures with satisfactory results. Combining these two models together makes a powerful hybrid multi-variable model that can predict a PEMFC's voltage under any current, temperature, cathode and anode gas pressure. This black-box hybrid PEMFC model could be a competitive solution for system level designs such as simulation, real-time control, online optimization and so on.  相似文献   

13.
The study first applies a three-dimensional model to analyze the cell performance of PEMFCs using rectangular cylinders with various numbers transversely inserted at the axis in the channel, and finds the higher performance with reasonable pressure drop. The Taguchi optimization methodology is then combined with the three-dimensional PEMFC model to determine the optimal combination of five primary operating parameters for the best arrangement of the rectangular cylinders in the channel. The results indicate that the optimal combination factor is a cell temperature of 313 K, an anode humidification temperature of 333 K, a cathode humidification temperature of 333 K, a hydrogen stoichiometric flow ratio of 1.9, and an oxygen stoichiometric flow ratio of 2.7. This study also examines the pressure drop for the channels with rectangular cylinders transversely inserted. Using experimental data verifies the numerical results of the flow field design with rectangular cylinders.  相似文献   

14.
An empirical corrosion model for SS316L in simulated proton exchange membrane fuel cell (PEMFC) environments is developed based on systematic experimental data on the effects of various factors, such as acidity, fluoride ion concentration, temperature and polarization potential. Correlation parameters under different conditions are provided in tabulated forms and comparisons of the empirical model with experimental results are shown in graphical forms. The results show that the empirical model agrees very well with the experimental data except at the short initial polarization time and the model is applicable up to a polarization potential of 0.7 V. The results also show that polarization potential is the most sensitive parameter among all the parameters studied.  相似文献   

15.
Corrosion performance of 316L stainless steel as a bipolar plate material in proton exchange membrane fuel cell (PEMFC) is studied under different simulated PEMFC anode conditions. Solutions of 1 × 10−5 M H2SO4 with a wide range of different F concentrations at 70 °C bubbled with hydrogen gas are used to simulate the PEMFC anode environments. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to study the corrosion behavior. Scanning electron microscope (SEM) and atomic force microscope (AFM) are used to examine the surface morphology of the specimen after it is potentiostatic polarized in simulated PEMFC anode environments. X-ray photoelectron spectroscopy (XPS) analysis is used to identify the compositions and the depth profile of the passive film formed on the 316L stainless steel surface after it is polarized in simulated PEMFC anode environments. Mott–Schottky measurements are used to characterize the semiconductor passive films. The results of potentiostatic analyses show that corrosion currents increase with F concentrations. SEM examinations show that no localized corrosion occurs on the surface of 316L stainless steel and AFM measurement results indicate that the surface topography of 316L stainless steel becomes slightly rougher after polarized in solutions with higher concentration of F. From the results of XPS analysis and Mott–Schottky measurements, it is determined that the passive film formed on 316L stainless steel is a single layer n-type semiconductor.  相似文献   

16.
This paper reports a Hammerstein modeling study of a proton exchange membrane fuel cell (PEMFC) stack using least squares support vector machines (LS-SVM). PEMFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. Due to the generalization performance of LS-SVM being independent of the dimensionality of the input data and the particularly simple structure of the Hammerstein model, a MIMO SVM-ARX (linear autoregression model with exogenous input) Hammerstein model is used to represent the PEMFC stack in this paper. The linear model parameters and the static nonlinearity can be obtained simultaneously by solving a set of linear equations followed by the singular value decomposition (SVD). The simulation tests demonstrate the obtained SVM-ARX Hammerstein model can efficiently approximate the dynamic behavior of a PEMFC stack. Furthermore, based on the proposed SVM-ARX Hammerstein model, valid control strategy studies such as predictive control, robust control can be developed.  相似文献   

17.
A finite element model is developed to investigate the influence of the assembly phase of proton exchange membrane fuel cell (PEMFC) stacks on the mechanical state of the active layer (MEAs). Validated by experimental measurements, this model offers the possibility to analyze the influence of different parameters through the use of a complete parametric set, such as the number of cells and their position in the stack. The simulations show that a better uniformity of the MEA compression is obtained with the greatest number of cells, and at the center of the stack. The finite element analysis (FEA) is finally found to be an effective tool to show the influence of the assembly phase on the performance of PEMFCs, and will help the designer to adapt the future generations of stack to ensure the uniformity of the MEA mechanical strain.  相似文献   

18.
In order to determine the suitability of SS316L as a bipolar plate material in proton exchange membrane fuel cells (PEMFCs), its corrosion behavior is studied under different simulated PEMFC cathode corrosion conditions. Solutions of 1 × 10−5 M H2SO4 with a wide range of different F concentrations at 70 °C bubbled with air are used to simulate the PEMFC cathode environment. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to study the corrosion behavior. Scanning electron microscopy (SEM) is used to examine the surface morphology of the specimen after it is potentiostatic polarized under simulated PEMFC cathode environments. Auger electron spectroscopy (AES) analysis is used to identify the composition and the depth profile of the passive film formed on the SS316L surface after it is polarized in simulated PEMFC cathode environments. Photo-electrochemical (PEC) method and capacitance measurements are used to characterize the semiconductor passive films. The results of both the potentiodynamic and potentiostatic analyses show that corrosion currents increase with F concentrations. SEM examination results indicate that pitting occurs under all the conditions studied and pitting is more severe with higher F concentrations. From the results of AES analysis, PEC analysis and the capacitance measurements, it is determined that the passive film formed on SS316L is a bi-layer semiconductor, similar to a p-n heterojunction consisting of an external n-type iron oxide rich semiconductor layer (electrolyte side) and an internal p-type iron-chromium oxide semiconductor layer (metal side). Further analyses of the experimental results reveal the electronic structure of the passive film and shed light on the corrosion mechanisms of SS316L in the PEMFC cathode environment.  相似文献   

19.
Carbon-supported Pt and Pd nanoparticles (CSNs) were synthesized and electrochemically characterized in view of potential application in proton exchange membrane (PEM) water electrolysers. Electroactive metallic nanoparticles were obtained by chemical reduction of precursor salts adsorbed to the surface of Vulcan XC-72 carbon carrier, using ethylene glycol as initial reductant and with final addition of formaldehyde. CSNs were then coated over the surface of electron-conducting working electrodes using an alcoholic solution of perfluorinated polymer. Their electrocatalytic activities with regard to the hydrogen evolution reaction (HER) were measured in sulfuric acid solution using cyclic voltammetry, and in a PEM cell during water electrolysis. Results obtained show that palladium can be advantageously used as an alternative electrocatalyst to platinum for the HER in PEM water electrolysers. Developed electrocatalysts could also be used in PEM fuel cells.  相似文献   

20.
In proton exchange membrane fuel cell (PEMFC), bionic flow field design is to apply the biological characteristics of nature to the structure design of flow field. The flow field designed by bionics can improve the water balance of the fuel cell and make the fuel distribute uniformly in the flow field. In order to study the PEMFC performance of symmetric and asymmetric bionic flow channel under gravity, the simulation and visualization experiments are used to study the bionic flow channel in different orientations. Under the influence of gravity, the distribution characteristics of liquid water are changed in the flow channel, and the difference of the transport process of liquid water in two different bionic flow channel under gravity is obtained. The results of the simulation and visualization experiments show that the gravity has a significant effect on the transport process of liquid water in the bionic flow channel, and the water transport process in the two types of bionic flow channel is obviously different. Meanwhile, the performance of the fuel cells with two bionic flow channel at different orientations is tested by experiments. The results show that gravity has a significant effect on the performance of PEMFC with bionic flow field. And there are significant differences between symmetrical and asymmetric bionic flow channel on PEMFC performance. The results of I–V curve show that when the PEMFC with asymmetric bionic flow channel has the best performance in the orientation of perpendicularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号