首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction periods for the peroxidation of various fish oils at 55–90°C were studied by the Rancimat test. The natural logarithms of the induction periods varied linearly with respect to temperature, with a mean coefficient of −7.5×10−2°C−1, which was significantly different from that reported for vegetable oils. The activation energy for the formation of volatile acids had a mean value of 38.9 kJ/mol and was independent of the fish oil source. Peroxide formation under Rancimat test conditions followed first-order kinetics. The same kinetics were followed under Schaal Oven test conditions (forced-air oven, 60°C). On the basis of the results obtained, the Rancimat test appears to be useful in determining the relative stabilities of fish oils without the change in peroxide decomposition kinetics that may occur at elevated temperatures.  相似文献   

2.
A method based on an off-line large-scale solid phase extraction (SPE) approach combined with conventional gas chromatographic-flame ionization detection (GC-FID) was developed to determine the mineral oil-saturated hydrocarbons (MOSH) in vegetable oils. A large-scale SPE column loaded with 10 g of activated silica gel impregnated with 1% silver nitrate which was used to retain lipids and olefins in vegetable oils and the MOSH in the oil samples was eluted with hexane. Then 2 μL concentrated solution was splitlessly injected into a common GC-FID instrument. The quantification limit reached 2.5 mg/kg when the MOSH fraction was concentrated to 0.1 mL. The accuracy of this procedure, as assessed by measuring the recoveries from spiked oil samples, was higher than 80%. This procedure was applied to analyze the MOSH in 38 commercial vegetable oils from Chinese market, which was the first survey of mineral oil contaminant in Chinese edible oils. The oil samples contaminated with different levels of MOSH, among which, 15 samples contained no mineral oils and 3 samples were contaminated with more than 50 mg/kg of MOSH. The highest contamination level was found in one of rice oils, in which the concentration of MOSH was up to 713.36 mg/kg. Of the 9 types of oils analyzed, camellia oil contained MOSH ranging between 6.76 and 78.49 mg/kg, averaging 46.72 mg/kg, indicating a higher contamination level than other types of oils. The results suggested that it is necessary to routinely detect mineral oil contamination in vegetable oils for food safety.  相似文献   

3.
Selection for oil quality is commonly conducted at the latest stages of olive breeding programs, as oil quality traits are measured in extracted oils. At the initial stages of breeding, the number of genotypes is high and fruit production is low, which makes it difficult to conduct oil extraction. The objective of this research was to evaluate the feasibility of conducting selection for some important oil quality traits in olive by analyzing fruit flesh instead of extracted oils. Fatty acids, tocopherols, phytosterols, and squalene were measured in fruit flesh and extracted oils from 22 individual olive trees showing variability for oil quality traits. Correlation coefficients between analyses conducted on fruit flesh and extracted oils were r = 0.98 for the main fatty acids palmitic, oleic, and linoleic acid, r = 0.96 for tocopherol content, r = 0.89 for phytosterol content, r = 0.97 for squalene content, and r = 0.91 and 0.94 for the concentrations of the two main sterols β-sitosterol and Δ5-avenasterol, respectively. The results revealed that selection for the mentioned oil quality traits can be efficiently conducted through the analysis of fruit flesh instead of extracted oil, which facilitates selection on larger numbers of genotypes at the initial stages of olive breeding programs.  相似文献   

4.
In this study, thermal splitting of secondary fatty acid esters of castor oil was investigated to determine the reaction kinetics under various conditions. Zinc oxide,p toluenesulfonic acid and sulfuric acid were used as catalysts. Reactions were carried out at 260, 270, and 280°C. Experimental data fitted the first-order rate equation for the catalyzed and noncatalyzed reactions. In addition to the kinetic investigation, the splitting (pyrolysis) mixture was evaluated in the preparation of a synthetic drying oil. For this purpose, the mixed fatty acids of linseed, sunflower andEcballium elaterium seed oils were used in the esterification stage of the process. Pyrolysis mixtures were converted to drying oils by combining the liberated acids with equivalent amounts of glycerol. The oils thus obtained show good drying oil properties.  相似文献   

5.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

6.
《分离科学与技术》2012,47(7):1062-1072
Soluble oils (cutting oils) in aqueous solution are used extensively in the engineering and metal working industries, as coolants, metal forming fluids, and/or lubricants. Hysol-X is a general-purpose cutting oil used in 1–10% concentration in aqueous solution. This paper investigates demulsification of soluble-oil-water emulsion using electrocoagulation with aluminum electrodes. It examines the current efficiency and the pH variation of the system due to electrocoagulation and the effect of pH of the oil-water emulsion, current density, and temperature on the demulsification process. A simple first order kinetics fits the experimental data at a constant value of current density. The optimum pH and current density were found to be 6.50 and 138.8 A/m2, respectively. Apparent electrode current efficiency was found to be 115.5%. Temperature has significant effect on emulsion stability and solution pH. At a lower temperature of 20°C or a higher temperature of 60°C, the turbidity (or oil) removal is found to be very high. More than 99% oil separation is achieved in 3 h at 20°C. The residual aluminum concentration in the treated water at an initial pH 6.5 is found to be 0.001 mg/l, well below the statutory discharge standard value.  相似文献   

7.
Olive oil composition has been investigated using chemical approaches, since the composition has a direct impact on its quality and safety and it may be used for certification purposes. In this paper, eleven monovarietal and twelve commercial Portuguese olive oils were analyzed to determine spectrophotometrically their total polyphenol content, ortho-diphenols and antioxidant activity. The phenolic profiles of these olive oils were also studied by high performance liquid chromatography. The lowest phenolic content and antioxidant activity were observed for monovarietal olive oils, however, among these group, ‘Cobrançosa’ and ‘Redondil’ cultivars showed the highest values of these two chemical parameters. In commercial olive oils, the concentration of polyphenols, determined according to the Folin–Ciocalteu method, and the antioxidant activity (ABTS method) ranged from 97.37 ± 1.10 to 219.7 ± 1.50 mg GAE/kg of oil and from 387.2 ± 20.00 to 997.5 ± 30.90 µmol Trolox/kg, respectively. The study of the phenolic profile demonstrated that the highest concentrations of the most abundant compounds in olive oil (tyrosol, hydroxytyrosol and oleuropein) are present in commercial olive oils. The correlation coefficient between total phenolics and antioxidant activity was statistically significant (r = 0.95, p < 0.0001). The same was observed for ortho-diphenol content and antioxidant capacity (r = 0.94, p < 0.0001).  相似文献   

8.
Food habits worldwide have increased the demand for oxidative-resistant oils that can be used for deep-frying. Oxidative stability in oils can be improved by changing the fatty acid composition of the oil or by adding natural antioxidants to the oil. In this study, the effect of essential oils of seven plants; cinnamon, rosemary, sage, turmeric, clove, thyme and oregano enriched with carvacrol on the oxidative stability of corn oil at frying temperatures were studied. Experiments were conducted by using a PetroOxy device, a rapid small scale oxidation stability test. A central composite design was used to evaluate the effects of concentration of essential oil (X1: 1,500–5,000 ppm) and temperature (X2: 150–180 °C), on the induction time of corn oil. In order to compare the results with the synthetic antioxidant, butylated hydroxy toluene (BHT), another design was made with a concentration range (60–350 ppm) containing the legal upper limit of BHT, 200 ppm. Induction periods obtained from the accelerated oxidation test revealed that increasing temperature decreased the induction time of all the samples. However, the essential oils except for oregano oil had no significant antioxidative effect on corn oil, probably due to a lower content of their active components. The antioxidative effect of oregano oil was also found to be higher compared to BHT. At very high temperatures (e.g., 180 °C), the concentration of antioxidants had no effect on the induction periods.  相似文献   

9.
Carbonated soybean oil was synthesized from epoxidized soybean oil and CO2 at atmospheric pressure and with tetrabutylammonium bromide (TBABr) as catalyst. Kinetic parameters, i.e., rate constants, activation energy and pre-exponential factors were determined. The effects of catalyst concentration and water content were studied. The reaction followed first-order kinetics with respect to epoxide at 100–140 °C. A steep increase in conversion (ca. 30 %) was obtained by increasing the amount of catalyst from 3 to 5 %. Further increasing the amount of catalyst to 7 % increased the conversion less than 10 %. The reaction proceeded faster when water was added; reaction times with water were ca. 70 % of the reaction times without water. Titration, FTIR and 1H-NMR analyses indicated ca. 90 % conversion and ca. 88 % selectivity towards the carbonate after 70 h at 120 °C with 5 % mol TBABr and 1:3 molar ratio of water to epoxide.  相似文献   

10.
Acrolein, which is an irritating and off-flavor compound formed during heating of vegetable oils, was estimated by the gas–liquid chromatography (GLC). Several vegetable oils such as high-oleic sunflower, perilla, rapeseed, rice bran, and soybean oils were heated at 180 °C for 480 min and then the concentration of acrolein in the head space gas was determined by GLC. The formation of acrolein was greatest in perilla oil among the tested oils, while it was much lower in rice bran oil and high-oleic sunflower oil. There was a good correlation between the level of acrolein and linolenate (18:3n-3) in the vegetable oils. To investigate the formation of acrolein from linolenate, methyl oleate, methyl linoleate, and methyl linolenate were also heated at 180 °C, and the amounts of acrolein formed from them were determined by GLC. The level of acrolein was the greatest in methyl linolenate. Acrolein was also formed from methyl linoleate, but not from methyl oleate. Acrolein in vegetable oils may be formed from polyunsaturated fatty acids, especially linolenic acid but not from glycerol backbone in triacylglycerols.  相似文献   

11.
《分离科学与技术》2012,47(8):1139-1146
Purification of waste cooking oils (palm oil and soybean oil) using supercritical carbon dioxide (scCO2) extraction has been investigated. The purified oils were characterized by their acid value, conjugated diene value, total polar compound measurements, and high-performance size exclusion chromatography. Using optimal extractions conditions of 353.15 K, 20 MPa, and CO2 flow rate of 40 g/min, 80% of the oil was recovered and the purified oil compositions and properties were very close to those of the fresh oils. At higher pressures or lower temperatures, the separation efficiency of the scCO2 extraction was significantly reduced.  相似文献   

12.
Response surface methodology employing a five-level, four-variable central composite rotatable design was applied to study the effects of extraction time, extraction temperature, pH and water/solid ratio on the extraction yield of pomegranate seed oil using an aqueous extraction approach. In addition, quality indices, fatty acid composition and antioxidant activity of the obtained oil were studied and compared with those of typical hexane-, cold press- and hot press-extracted oil. Aqueous extraction resulted in the maximum oil recovery of 19.3% (w/w), obtained under the following critical values: water/solid ratio (2.2:1.0, mL/g), pH 5.0, extraction temperature = 63 °C and extraction time = 375 min. This yield is lower than that obtained via hexane extraction (26.8%, w/w) and higher than the yields from cold press (7.0%, w/w) and hot press (8.6%, w/w) extraction. A comparison of the characteristics of the oils based on extraction method revealed that the unsaturated fatty acid content was highest for the oil obtained by aqueous extraction. In addition, higher levels of iodine and peroxide and lower levels of acid, p-anisidine and unsaponifiable matter were observed. The oil obtained with aqueous extraction also exhibited higher antioxidant activity than oils obtained by hexane or hot press extraction.  相似文献   

13.
Oil was extracted from the seeds of white-flesh and red-flesh dragon fruits (Hylocereus spp.) using a cold extraction process with petroleum ether. The seeds contained significant amounts of oil (32–34 %). The main fatty acids were linoleic acid (C18:2, 45–55 %), oleic acid (C18:1, 19–24 %), palmitic acid (C16:0, 15–18 %) and stearic acid (C18:0, 7–8 %). The seed oils are interesting from a nutritional point of view as they contain a large amount of essential fatty acids, amounting to up to 56 %. In both dragon fruit seed oils, tri-unsaturated triacylglycerol (TAG) was mainly found while their TAG composition and relative percentage however varied considerably. Therefore, they showed a different melting profile. A significant amount of total tocopherols was observed (407–657 mg/kg) in which the α-tocopherol was the most abundant (~72 % of total tocopherol content). The impact of storage conditions, cold and room temperatures, on the oxidative stability and behavior of tocopherols was monitored over a 3-month storage period. During storage, the oxidative profile changed with a favorably low oxidation rate (~1 mequiv O2/week) whilst tocopherols decreased the most at room temperature. After 12 weeks, the total tocopherol content, however, still remained high (65–84 % compared to the initial oils). Hereto, the dragon fruit seed oils can be considered as a potential source of essential fatty acids and tocopherols, with a good oxidative resistance.  相似文献   

14.
Pan-frying is a popular frying method at home and in many restaurants. Pan-frying stabilities of two frying oils with similar iodine values (IV)—mid-oleic sunflower oil (NuSun oil; IV=103.9) and a commercial canola oil (IV=103.4)—were compared. Each oil sample was heated as a thin film on a Teflon-coated frying pan at ∼180°C to a target end point of ≥20% polymer. High-performance size-exclusion chromatography analysis of the mid-oleic sunflower and canola oil samples indicated that the heated samples contained 20% polymer after approximately 18 and 22 min of heating, respectively. The food oil sensor values increased from zero to 19.9 for the canola sample and from zero to 19.8 for the mid-oleic sunflower sample after 24 min of heating. The apparent first-order degradation rate for the mid-oleic sunflower sample was 0.102±0.008 min−1, whereas the rate for the canola sample was 0.092±0.010 min−1. The acid value increased from approximately zero prior to heating to 1.3 for the canola sample and from zero to 1.0 for the mid-oleic sunflower sample after 24 min of heating. In addition, sensory and volatile analyses of the fried hash browns obtained from both oils indicated there were no significant differences between the two fried potato samples.  相似文献   

15.
The effects of roasting and aqueous extraction conditions for oil recovery from wild almond were optimized using response surface methodology (RSM). Optimum conditions for oil extraction were obtained at 142 °C roasting temperature, 16.5 min roasting time, 5.67 extraction pH and 4.6 h extraction time. Under these conditions, the extraction yield of 34.5% (w/w, based on the original weight of the sample) was obtained, which is equivalent to 80.0% of the total oil in the kernel. This was lower than that obtained by hexane Soxhlet (HS) extraction (43.1%, w/w, considered as 100% of total oil) but higher than that of cold pressing (CP) (18.5%, w/w; i.e., 42.9% of total oil). The refractive indices and saponification values of the oils were not affected by the extraction method. However, fatty acid and tocopherol compositions and DPPH radical scavenging capacities as well as unsaponifiable matter, iodine, peroxide and acid values of the obtained oils were impacted by the extraction method. The results showed that the quality attributes (omega-6 fatty acid content, peroxide and acid values, total tocopherol contents and antioxidant activity) of the oil obtained by AEP were somewhat similar to those of the oil extracted by CP and much superior to those of the oil obtained by HS.  相似文献   

16.
The objective of this research was to determine the oxidative stability of fish oil blended with crude plant oils rich in naturally occurring antioxidants, camelina oil and oat oil, respectively, in bulk and after supplementation of 1 wt% of oil blends to skimmed milk emulsions. Ability of crude oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat oil was added to fish oil in only 5 and 10 %, whereas no protective effect of camelina oil was observed when evaluated by these methods. Moreover, fish oil blended with oat oil conferred the lowest PV and lower amounts of volatile compounds during the storage period of 14 days at 4 °C. Surprisingly, skimmed milk supplemented with fish-oat oil blend gave the highest scores for off-flavors in the sensory evaluation, demonstrating that several methods, including sensory analysis, should be combined to illustrate the complete picture of lipid oxidation in emulsions.  相似文献   

17.
The effects of ultrasonic standing waves on palm oil separation of ex-screw press feed from the mesocarp of the palm oil fruit, oil recovery and oil quality were determined. The ex-screw press feed at 85 °C was pumped simultaneously into two identical vessels. One vessel was the control (non-ultrasound) and the other vessel (ultrasound) was fitted with two 400 kHz transducer plates operating at 13.4 kJ/kg, which were placed in direct contact with the feed. Oiling-off by gravity settling occurred at faster rates after sonication. The total recoverable oil after 30 min gravity settling and upon centrifuging the underflow sludge (remaining colloidal fraction) at 1000×g was higher after sonication. Total recoverable oil was 30.7 ± 2.9 % and 43.5 ± 8.6 % (w/w original feed basis) for the non-sonicated and sonicated samples respectively. Sonication reduced the oil content of the sludge ex-centrifuge, demonstrating that higher recovery of palm oil was obtained with ultrasound application. Sonication did not affect the DOBI (deterioration of bleachability index) value, and vitamin E and free fatty acid contents of the separated oil. High-frequency ultrasound enhances the separation rate of palm oil and increases oil recovery without compromising oil quality.  相似文献   

18.
The study was designed to characterise two extracts of Western Australian sandalwood (Santalum spicatum) seed oils for their physicochemical and lipid characteristics. Sandalwood plantation’s surplus seeds could be used for their oil content, to improve the commercial viability of this industry. The seed oils were obtained by solvent extraction and supercritical carbon dioxide extraction respectively. Important physicochemical parameters were compared with other oils commonly used in pharmaceutical and cosmetic products. Acid values were found to be higher (6.0–7.5 mg KOH/1 g oil) while peroxide values (6.7–9.0 mequiv/Kg) were lower than reported for other oils. Tocopherols were found to be lower than those usually reported for nut oils (α-tocopherol 1–3 mg/100 g; δ-tocopherol 2.2–5.7 mg/100 g), squalenes and phytosterols were found in considerable quantities. The fatty acid content consisted largely of ximenynic acid (35 %) and oleic acid (52 %). No oxidative derivatives of fatty acids were observed. Although there were statistically significant differences in some properties, the magnitude of these were insufficient to conclude there were any notable differences in the two oil extracts.  相似文献   

19.
Triacylglycerol (TAG) and phospholipid (PL) compositions of vegetable oils are considered a marker of quality and are often used in industry to control the purity of the oils and to detect adulteration. In this study, the TAG and PL composition of developing fruit of Pistacia lentiscus were investigated for the first time. The total TAG content was found to increase rapidly during fruit ripening from 105 to 966 mg/100 g of oil respectively between the 35th and the 175th day after fructification (DAF). During this period, 16 different molecular species of TAG were identified and quantified. POO was the major TAG from the second stage of maturation. Only four classes of PL were identified in the P. lentiscus oil: the phosphatidic acid (PA), the phosphatidylethanolamine (PE), the phosphatidylglycerol (PG) and the phosphatidylinositol (PI). The mass spectra obtained showed the presence of nine molecular species of PA, five species of PE and seven molecular species for each PG and PI classes. The total phospholipid content decreased rapidly during fruit ripening, from 45.5 % at the 15th DAF to 6.88 % at the 175th DAF.  相似文献   

20.
Camellia seed oil with high nutritional value is widely used in southern China and southeastern Asia for cooking. Due to the high price of camellia seed oil, fraudulent traders blended the oil with inexpensive oils to increase profits. In this paper, a new method was introduced to detect the adulteration of camellia seed oil with soybean oil by GC–MS with consideration of a parameter which was defined by the total content of oleic and linoleic acid, the oleic to linoleic acid ratio and the content of linolenic acid. Oils samples were prepared by blending pure camellia seed oil with pure soybean oil at levels from 1 to 50 %. Fatty acids esterified by TMSH and TBME in seconds were separated and identified by GC–MS. The detection limit of adulteration was as low as 5 %, and even much lower than 5 % for most kinds of camellia seed oil, which was lower than those measured by other methods. All the results indicated that this simple, accurate and rapid method can also be recommended for the authentication of olive oil with some modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号