首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
An aqueous extraction process was developed consisting of aqueous contact with dehulled yellow mustard flour to recover protein followed by dissolution of the released emulsion in dimethylformamide (DMF) or isopropyl alcohol (IPA) to recover the released oil in the form of single-phase oil–solvent miscellae suitable for industrial applications. Only some 38 ± 3 % of the oil in the yellow mustard emulsion was extracted using DMF even at high weight ratios since DMF is widely miscible with water, preventing separation of the oil from the emulsion. A ternary phase diagram of DMF/oil/water was prepared and confirmed the limited solubility of the oil in DMF in the presence of water. The use of 31:1 IPA:oil weight ratio could effectively recover over 94 % of the oil in the emulsion; however, multiple-stage treatment of the emulsion was proven to be more efficient with lower volumes of IPA required to achieve high oil extraction yields. The results suggest that the optimal conditions for multiple-stage process were four stages using 2:1 IPA:oil weight ratio, with 96 ± 1 % oil recovery from the emulsion.  相似文献   

2.
Two types of protein isolates were prepared from de‐hulled yellow mustard flour by aqueous extraction, membrane processing and isoelectric precipitation. The precipitated and soluble protein isolates had 96.0 and 83.5% protein content on a moisture and oil free basis, respectively. Their functional properties were evaluated and compared with commercial soybean and other Brassica protein isolates. The soluble protein isolate exhibited high values for all properties. The precipitated protein isolate showed excellent oil absorption and emulsifying properties but poor solubility, water absorption and foaming properties due to its high lipid content (~25%). Storage temperature had limited effect on lipid oxidation, and hence the stability of the precipitated protein isolate at 25–45 °C. Flavor of wieners and bologna prepared with 2% of this isolate as binder was comparable to those prepared with soy protein isolate.  相似文献   

3.
Tetrahydrofuran, added to the oil‐in‐water emulsions formed by the aqueous processing of yellow mustard flour, produced oil/water/THF miscellas containing 1–2 % water. The high water content prevented the direct conversion of the system to fatty acid methyl esters (FAME) through a single‐phase base‐catalyzed transmethylation process. Dehydration of these miscellas by adsorption on 4A molecular sieves at room temperature using either batch or continuous fixed‐bed systems successfully reduced the water content to the quality standards needed for biodiesel feedstock (0.3 %). Equilibrium adsorption studies for the uptake of water from oil/THF/water miscella phases at room temperature allowed quantitative comparison of the water adsorption capacity based on the oil and THF concentrations of the miscellas. Batch contact was used to investigate the dominant parameters affecting the uptake of water including miscella composition, adsorbent dose and contact time. The adsorption of the water was strongly dependent on adsorbent dose and miscella oil concentrations. The regeneration of molecular sieves by heating under nitrogen at reduced pressure for 6 h at 275 °C resulted in incomplete desorption of miscella components. The adsorption breakthrough curves in terms of flow rates, initial water and oil miscella concentrations were determined. The dehydrated miscella phases were reacted with methanol in a single‐phase base‐catalyzed transmethylation process with high yields (99.3 wt%) to FAME. The resulting FAME met the ASTM international standard in terms of total glycerol content and acid number.  相似文献   

4.
The recovery of solvents used during biodiesel synthesis is an important factor in the economic feasibility and sustainability of the entire process. In this study, we looked at the use of isopropyl alcohol (IPA) for oil extraction and biodiesel production, as well as its potential for recovery and recycling. We found that multistage extraction improved oil recovery, with up to 86% oil yield using four stages of extraction at an IPA:mustard flour (volume:weight) ratio of 1.5:1 at room temperature. Using acid–base‐catalyzed transesterification, 99% of the mustard oil was converted to biodiesel. At the end of this process, IPA was recovered from the azeotrope by salting out using potassium carbonate or sodium carbonate. The solubility behavior of the components was evaluated by means of ternary‐phase diagrams of IPA/water/sodium carbonate and IPA/water/potassium carbonate, which determined their liquid–liquid–solid equilibrium constants at ambient pressure and at room temperature. Using 20% (w:w) potassium carbonate, 95% of the IPA was recovered at 99% purity from a starting mixture of IPA containing 13% water. Azeotropic distillation of the IPA–water azeotrope with 10% potassium carbonate resulted in the recovery of 99% of the IPA at 94% purity. These results suggest that IPA is not only a suitable solvent for mustard‐oil extraction but also for salt‐enhanced azeotropic distillation resulting in near‐complete recovery from aqueous solutions.  相似文献   

5.
Vegetable oils are typically extracted with hexane; however, health and environmental concerns over its use have prompted the search for alternative solvents. Mustard oil was extracted with isopropyl alcohol (IPA) to produce an IPA‐oil miscella suitable for industrial applications. Single‐stage extraction resulted in 87.6 % oil yield at a 10:1 (v/w) IPA/flour ratio. Multiple‐stage extraction resulted in higher extraction efficiency with lower IPA use. Four‐stage cross‐current extraction at an IPA/flour ratio of 2:1 (v/w) per stage resulted in 93.7 % oil yield. At 45 °C, a 91.5 % oil yield was achieved with three‐stage extraction using a 2:1 (v/w) IPA/flour ratio. Any changes to the pH of the mixture resulted in reduced oil yield. Water also reduced the extraction efficiency. The azeotropic IPA solution containing 13 % water extracted ~40 % less oil than did dry IPA in both single and multiple‐stage extractions. Some polar compounds were also extracted, including sugars; however, protein extraction was negligible. The protein left in the extracted meal was not degraded or lost during the extraction. The results suggest that IPA is an excellent solvent for mustard oil, but water content exceeding 5 % in the solvent adversely affects the oil extraction and reuse of the IPA.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号