首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
HY-2卫星DORIS精密定轨技术   总被引:1,自引:0,他引:1  
2011年8月16日发射的海洋二号(HY-2)卫星是中国第一颗动力环境卫星,搭载的多普勒雷达和无线电定位组合系统(DORIS)作为HY-2主要定轨手段之一。本文较为详细介绍了HY-2多普勒雷达和无线电定位组合系统定轨技术流程和方法,并对其定轨结果进行了初步检验。  相似文献   

2.
HY-2卫星双频GPS精密定轨技术   总被引:3,自引:0,他引:3  
海洋二号(HY-2)卫星双频全球定位跟踪系统(GPS)接收机获取的GPS数据是基于非差简化动力学方法应用于HY-2卫星精密轨道确定。差分GPS载波相位数据可以消除钟差,同时利用GPS数据获得HY-2卫星轨道和GPS卫星轨道。GPS数据确定的轨道利用激光测距进行了检核,并与法国太空总署确定的轨道以及综合定轨策略确定的轨道进行了比较,HY-2卫星基于GPS数据精密轨道径向成分优于3cm。  相似文献   

3.
HY-2卫星地面应用系统综述   总被引:4,自引:0,他引:4  
海洋二号(HY-2)卫星地面应用系统是HY-2卫星工程五大系统之一,具备HY-2卫星数据的接收、处理、定标和验证以及数据应用等功能。HY-2卫星地面应用系统具备稳定可靠运行的卫星接收系统,接收我国南海、东海、黄海、渤海及东北亚周边海域的实时数据;建设了包括多星运行计划管理、接收预处理、精密定轨、运控通信、数据处理、产品存档及分发服务和业务应用在内的HY-2卫星数据处理中心,每天处理海洋动力环境产品并向国内外用户提供数据分发及应用服务。为了全面的介绍HY-2卫星地面应用系统,本文分别对地面应用系统中主要分系统的组成、功能和业务流程等进行了综述。  相似文献   

4.
海洋二号卫星精密定轨方案设计及实现   总被引:1,自引:0,他引:1  
2011年8月16日发射的海洋环境动力(海洋二号)卫星是中国第一颗动力环境卫星,其中搭载的雷达高度计需要连续的厘米级海洋地形测量,轨道误差在雷达高度计整体误差预算中占主要部分,为实现海洋二号卫星精密定轨事后处理径向10 cm精度的研制总要求,海洋二号卫星搭载了多普勒地球轨道和无线电定位系统(DORIS)接收机、双频全球定位系统(GPS)接收机和激光反射棱镜阵列用于精密定轨。本文综述了海洋二号卫星精密定轨方案设计和关键技术,给出了在轨测试结果。  相似文献   

5.
李洪波  彭军 《计测技术》2013,(6):11-15,50
简述了应用于全球卫星定位/导航系统(GPS)等卫星定轨领域重要技术之一的卫星激光测距系统(Satellite Laser Ranging,SLR)的研究背景和现状,展望了SLR技术的发展方向。  相似文献   

6.
海洋二号卫星主被动微波遥感探测技术研究   总被引:7,自引:0,他引:7  
介绍了海洋二号(HY-2A)卫星4个微波有效载荷(雷达高度计、微波散射计、扫描微波辐射计和校正微波辐射计)的功能、性能和设计指标。HY-2A卫星突破了我国微波遥感设备技术上的瓶颈,为海洋环境监测预报业务化和防灾减灾提供了必要的海洋观测手段,解决了我国自主海洋动力环境参数遥感观测有无的问题。HY-2A卫星的成功发射和业务化运行为我国海洋卫星发展规划打下了坚实的基础。  相似文献   

7.
海洋二号(HY-2A)卫星是我国第一颗海洋动力环境卫星,雷达高度计是HY-2A卫星的主载荷之一,发射入轨后仪器工作正常,并获得了大量有效的观测数据。该仪器在20 m有效波高条件下测高精度达到了4 cm,在4 m有效波高条件下测高精度达到了2 cm,其产品精度接近Jason-2卫星高度计。本文就HY-2A卫星雷达高度计系统设计和在轨初步结果进行论述。  相似文献   

8.
本文在简述海洋二号(HY-2)卫星微波散射计工作机制及海面风场反演原理的基础上,针对HY-2卫星微波散射计在轨运行的数据,利用该散射计数据开展海面台风中心定位、结构、台风路径、风速等值线、大风半径等台风参数的定量化应用分析研究。同时将HY-2卫星观测到的海面风场与风云二号(FY-2E)卫星云图进行融合展示,并将HY-2海面风场与ASCAT反演的海面风场和浮标提供的观测数据进行对比验证,多方面的定量分析显示出HY-2卫星海面风场观测的有效性和在台风监测中的优势。最后,对HY-2卫星微波散射计的优缺点进行分析,展望了其可能的改进方向。  相似文献   

9.
本文给出了海洋二号(HY-2)卫星雷达高度计风速反演的双参数算法模型,并利用Jason-1产品和HY-2卫星微波散射计产品定性验证了双参数算法模型的正确性,同时利用星星交叉比对方法、美国国家浮标数据中心(National Data Buoy Center,NDBC)浮标数据验证方法、美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析数据验证方法三种不同方法对该模型进行定量化验证,结果表明HY-2卫星雷达高度计风速反演的双参数算法模型的反演精度达到2.0 m/s的精度,满足海洋业务应用和科学研究的精度要求,可为用户提供满足观测要求的海面风产品。  相似文献   

10.
有效波高是描述海况的重要参量之一,利用高度计遥感获取有效波高已在海洋研究中获得广泛应用。本文基于海洋二号(HY-2)卫星高度计波形数据,发展了一种高分辨率有效波高反演算法,采用中误差对反演得到的20 Hz有效波高进行筛选,有效提高了测量精度。通过该方法对1个轨的波形数据进行有效波高反演,统计结果表明:与针对1 s回波反演的有效波高比较,利用该方法可将有效波高观测分辨率提高约15倍,精度约为0.44 m;利用HY-2高度计20 Hz波形数据反演的有效波高精度可靠,可用其进行高分辨率的相关海洋研究。  相似文献   

11.
主要针对HY-2卫星微波散射计,提出反演海面风矢量模型算法,并进行误差精度分析,给出了HY-2卫星微波散射计数据获取、预处理、风矢量场反演和产品制作技术流程,为HY-2卫星发射上天后能尽快发挥应有的效益做好技术准备,以此推动我国海洋微波遥感技术的发展.  相似文献   

12.
Establishing a link between a ground station and a geosynchronous orbiting satellite can be aided greatly with the use of a beacon on the satellite. A tracker, or even an adaptive optics system, can use the beacon during communication or tracking activities to correct beam pointing for atmospheric turbulence and mount jitter effects. However, the pointing lead-ahead required to illuminate the moving object and an aperture mismatch between the tracking and the pointing apertures can limit the effectiveness of the correction, as the sensed tilt will not be the same as the tilt required for optimal transmission to the satellite. We have developed an analytical model that addresses the combined impact of these tracking issues in a ground-to-satellite optical link. We present these results for different tracker/pointer configurations. By setting the low-pass cutoff frequency of the tracking servo properly, the tracking errors can be minimized. The analysis considers geosynchronous Earth orbit satellites as well as low Earth orbit satellites.  相似文献   

13.
《工程(英文)》2020,6(8):904-912
Using the FengYun-3C (FY-3C) onboard BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS) data from 2013 to 2017, this study investigates the performance and contribution of BDS to precise orbit determination (POD) for a low-Earth orbit (LEO). The overlap comparison result indicates that code bias correction of BDS can improve the POD accuracy by 12.4%. The multi-year averaged one-dimensional (1D) root mean square (RMS) of the overlapping orbit differences (OODs) for the GPS-only solution is 2.0, 1.7, and 1.5 cm, respectively, during the 2013, 2015, and 2017 periods. The 1D RMS for the BDS-only solution is 150.9, 115.0, and 47.4 cm, respectively, during the 2013, 2015, and 2017 periods, which is much worse than the GPS-only solution due to the regional system of BDS and the few BDS channels of the FY-3C receiver. For the BDS and GPS combined solution (also known as the GC combined solution), the averaged 1D RMS is 2.5, 2.3, and 1.6 cm, respectively, in 2013, 2015, and 2017, while the GC combined POD presents a significant accuracy improvement after the exclusion of geostationary Earth orbit (GEO) satellites. The main reason for the improvement seen after this exclusion is the unfavorable satellite tracking geometry and poor orbit accuracy of GEO satellites. The accuracy of BDS-only and GC combined solutions have gradually improved from 2013 to 2017, thanks to improvements in the accuracy of International GNSS Service (IGS) orbit and clock products in recent years, especially the availability of a high-frequency satellite clock product (30 s sampling interval) since 2015. Moreover, the GC POD (without GEO) was able to achieve slightly better accuracy than the GPS-only POD in 2017, indicating that the fusion of BDS and GPS observations can improve the accuracy of LEO POD. GC combined POD can significantly improve the reliability of LEO POD, simply due to system redundancy. An increased contribution of BDS to LEO POD can be expected with the launch of more BDS satellites and with further improvements in the accuracy of BDS satellite products in the near future.  相似文献   

14.
15.
研究了航空器目标跟踪中继卫星的星间天线指向实时监视问题.设计了星间天线指向监视计算模型,通过对航空器实时位置和中继卫星轨道的求解,得到了惯性系下的天线指向矢量,再通过坐标转换和矢量投影,得到了航空器星间天线理论指向角.通过将计算得到的理论指向角与遥测的天线框架角作差,得到了天线指向误差.在此基础上完成了天线指向实时监视系统设计,并进行了跟踪过程天线指向精度的事后统计分析.该天线指向实时监视系统利用航空器的遥测信息实现了跟踪过程中星间天线的指向角及指向角误差的实时确定,取得了良好的应用效果,有效地保证了数据中继任务中航天器用户目标对中继卫星跟踪的准确监视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号