首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鄢勇 《计算机学报》1993,16(9):648-654
本文首先提出一切合实际的互斥信件量度量方法,该方法不仅考虑请求结点所发的信息数,同时还考虑信件的存储转发次数,然后针对任一拓扑结构,在充分利用局部信息与已知信息的基础上,给出了互斥信件量为0~2(n—1)(n为结点数)的有效互斥算法,该算法不仅在互斥信件量上是目前最优的,而且充分体现了分布式算法设计的一个重要原则,充分利用一切已知信息作为未来决策的依据。  相似文献   

2.
The group mutual exclusion problem is a generalization of mutual exclusion problem such that a set of processes in the same group can enter critical section simultaneously. In this paper, we propose a distributed algorithm for the group mutual exclusion problem in asynchronous message passing distributed systems. Our algorithm is based on tokens, and a process that obtains a token can enter critical section. For reducing message complexity, it uses coterie as a communication structure when a process sends a request messages. Informally, coterie is a set of quorums, each of which is a subset of the process set, and any two quorums share at least one process. The message complexity of our algorithm is $O(|Q|)$ in the worst case, where $|Q|$ is a quorum size that the algorithm adopts. Performance of the proposed algorithm is presented by analysis and discrete event simulation. Especially, the proposed algorithm achieves high concurrency, which is a performance measure for the number of processes that can be in critical section simultaneously.  相似文献   

3.
A fair distributed mutual exclusion algorithm   总被引:1,自引:0,他引:1  
This paper presents a fair decentralized mutual exclusion algorithm for distributed systems in which processes communicate by asynchronous message passing. The algorithm requires between N-1 and 2(N-1) messages per critical section access, where N is the number of processes in the system. The exact message complexity can be expressed as a deterministic function of concurrency in the computation. The algorithm does not introduce any other overheads over Lamport's and Ricart-Agrawala's algorithms, which require 3(N-1) and 2(N-1) messages, respectively, per critical section access and are the only other decentralized algorithms that allow mutual exclusion access in the order of the timestamps of requests  相似文献   

4.
We present an adaptive algorithm for N-process mutual exclusion under read/write atomicity in which all busy waiting is by local spinning. In our algorithm, each process p performs O(k) remote memory references to enter and exit its critical section, where k is the maximum “point contention” experienced by p. The space complexity of our algorithm is Θ(N), which is clearly optimal. Our algorithm is the first mutual exclusion algorithm under read/write atomicity that is adaptive when time complexity is measured by counting remote memory references.A preliminary version of this paper was presented at the 14th International Symposium on Distributed Computing [6].  相似文献   

5.
The performance of a mutual exclusion algorithm is measured by the number of messages exchanged per critical section execution and the delay between successive executions of the critical section. There is a message complexity and synchronization delay trade-off in mutual exclusion algorithms. The Lamport algorithm (1978) and the Ricart-Agrawal algorithm (1981) both have a synchronization delay of T (T is the average message delay), but their message complexity is O(N). Maekawa's algorithm reduces the message complexity to O(√N); however, it increases the synchronization delay to 2T. After Maekawa's algorithm (1985), many quorum-based mutual exclusion algorithms have been proposed to reduce the message complexity or the increase the resiliency to site and communication link failures. Since these algorithms are Maekawa-type algorithms, they also suffer from the long synchronization delay. We propose a delay-optimal quorum-based mutual exclusion algorithm which reduces the synchronization delay to T and still has a low message complexity of O(K) (K is the size of the quorum which can be as low as log N). A correctness proof and a detailed performance analysis are provided  相似文献   

6.
Summary. Several years ago, Yang and Anderson presented an N-process algorithm for mutual exclusion under read/write atomicity that has time complexity, where “time” is measured by counting remote memory references. In this algorithm, instances of a two-process mutual exclusion algorithm are embedded within a binary arbitration tree. In the two-process algorithm that was used, all busy-waiting is done by “local spinning.” Performance studies presented by Yang and Anderson showed that their N-process algorithm exhibits scalable performance under heavy contention. One drawback of using an arbitration tree, however, is that each process is required to perform remote memory operations even when there is no contention. To remedy this problem, Yang and Anderson presented a variant of their algorithm that includes a “fast-path” mechanism that allows the arbitration tree to be bypassed in the absence of contention. This algorithm has the desirable property that contention-free time complexity is O(1). Unfortunately, the fast-path mechanism that was used caused time complexity under contention to rise to in the worst case. To this day, the problem of designing a read/write mutual exclusion algorithm with O(1) time complexity in the absence of contention and O(logN) time complexity under contention has remained open. In this paper, we close this problem by presenting a fast-path mechanism that achieves these time complexity bounds when used in conjunction with Yang and Anderson's arbitration-tree algorithm. Received: July 1999 / Accepted: July 2000  相似文献   

7.
The group mutual exclusion problem extends the traditional mutual exclusion problem by associating a type (or a group) with each critical section. In this problem, processes requesting critical sections of the same type can execute their critical sections concurrently. However, processes requesting critical sections of different types must execute their critical sections in a mutually exclusive manner. We present a distributed algorithm for solving the group mutual exclusion problem based on the notion of surrogate-quorum. Intuitively, our algorithm uses the quorum that has been successfully locked by a request as a surrogate to service other compatible requests for the same type of critical section. Unlike the existing quorum-based algorithms for group mutual exclusion, our algorithm achieves a low message complexity of O(q) and a low (amortized) bit-message complexity of O(bqr), where q is the maximum size of a quorum, b is the maximum number of processes from which a node can receive critical section requests, and r is the maximum size of a request while maintaining both synchronization delay and waiting time at two message hops. As opposed to some existing quorum-based algorithms, our algorithm can adapt without performance penalties to dynamic changes in the set of groups. Our simulation results indicate that our algorithm outperforms the existing quorum-based algorithms for group mutual exclusion by as much as 45 percent in some cases. We also discuss how our algorithm can be extended to satisfy certain desirable properties such as concurrent entry and unnecessary blocking freedom.  相似文献   

8.
一种高效能的分布式请求集生成算法   总被引:1,自引:0,他引:1  
分布式互斥请求集的长度、对称性和生成的难易程度以及生成算法占用的空间及耗费的时间直接影响着基于该请求集的分布式互斥算法的消息复杂度、对称性和算法的应用规模。本文在折半循环编码算法的基础上,提出了一种增加算法初始化节点数量和引入松弛差集的对称分布式互斥请求集生成算法,使算法的时间复杂度和消息复杂度大幅度降低。  相似文献   

9.
Summary. Group mutual exclusion occurs naturally in situations where a resource can be shared by processes of the same group, but not by processes of different groups. For example, suppose data is stored in a CD-jukebox. Then when a disc is loaded for access, users that need data on the disc can concurrently access the disc, while users that need data on a different disc have to wait until the current disc is unloaded. The design issues for group mutual exclusion have been modeled as the Congenial Talking Philosophers problem, and solutions for shared-memory models have been proposed [12,14]. As in ordinary mutual exclusion and many other problems in distributed systems, however, techniques developed for shared memory do not necessary apply to message passing (and vice versa). So in this paper we investigate solutions for Congenial Talking Philosophers in computer networks where processes communicate by asynchronous message passing. We first present a solution that is a straightforward adaptation from Ricart and Agrawala's algorithm for ordinary mutual exclusion. Then we show that the simple modification suffers a severe performance degradation that could cause the system to behave as though only one process of a group can be in the critical section at a time. We then present a more efficient and highly concurrent distributed algorithm for the problem, the first such solution in computer networks. Received: August 2000 / Accepted: November 2001  相似文献   

10.
First-Come-First-Served (FCFS) mutual exclusion (ME) is the problem of ensuring that processes attempting to concurrently access a shared resource do so one by one, in a fair order. In this paper, we close the complexity gap between FCFS ME and ME in the asynchronous shared memory model where processes communicate using atomic reads and writes only, and do not fail. Our main result is the first known FCFS ME algorithm that makes O(log N) remote memory references (RMRs) per passage and uses only atomic reads and writes. Our algorithm is also adaptive to point contention. More precisely, the number of RMRs a process makes per passage in our algorithm is Θ(min(k, log N)), where k is the point contention. Our algorithm matches known RMR complexity lower bounds for the class of ME algorithms that use reads and writes only, and beats the RMR complexity of prior algorithms in this class that have the FCFS property.  相似文献   

11.
Summary. This paper presents adaptive algorithms for mutual exclusion using only read and write operations; the performance of the algorithms depends only on the point contention, i.e., the number of processes that are concurrently active during the algorithm execution (and not on n, the total number of processes). Our algorithm has O(k) remote step complexity and O(logk) system response time, wherek is the point contention. The remote step complexity is the maximal number of steps performed by a process where a wait is counted as one step. The system response time is the time interval between subsequent entries to the critical section, where one time unit is the minimal interval in which every active process performs at least one step. The space complexity of this algorithm is O(N logn), where N is the range of processes' names. We show how to make the space complexity of our algorithm depend solely on n, while preserving the other performance measures of the algorithm. Received: March 2001 / Accepted: November 2001  相似文献   

12.
Mutual exclusion is a fundamental distributed coordination problem. Shared-memory mutual exclusion research focuses on local-spin algorithms and uses the remote memory references (RMRs) metric. Attiya, Hendler, and Woelfel (40th STOC, 2008) established an Ω(log N) lower bound on the number of RMRs incurred by processes as they enter and exit the critical section, where N is the number of processes in the system. This matches the upper bound of Yang and Anderson (Distrib. Comput. 9(1):51–60, 1995). The upper and lower bounds apply for algorithms that only use read and write operations. The lower bound of Attiya et al., however, only holds for deterministic algorithms. The question of whether randomized mutual exclusion algorithms, using reads and writes only, can achieve sub-logarithmic expected RMR complexity remained open. We answer this question in the affirmative by presenting starvation-free randomized mutual exclusion algorithms for the cache coherent (CC) and the distributed shared memory (DSM) model that have sub-logarithmic expected RMR complexity against the strong adversary. More specifically, each process incurs an expected number of O(log N / log log N) RMRs per passage through the entry and exit sections, while in the worst case the number of RMRs is O(log N).  相似文献   

13.
Summary. Long-lived and adaptive implementations of mutual exclusion and renaming in the read/write shared memory model are presented. An implementation of a task is adaptive if the step complexity of any operation in the implementation is a function of the number of processes that take steps concurrently with the operation. The renaming algorithm assigns a new unique id in the range to any process whose initial unique name is taken from a set of size N, for an arbitrary N and where k is the number of processes that actually take steps or hold a name while the new name is being acquired. The step complexity of acquiring a new name is , while the step complexity of releasing a name is 1. The space complexity of the algorithm is where n is an upper bound on the number of processes that may be active at the same time (acquiring or holding new names), which could be N in the worst case. Both the system response time and the worst case number of operations per process in the presented mutual-exclusion algorithm are adaptive. Both algorithms rely on the basic building block of a long-lived and adaptive splitter. While the adaptive-splitter satisfies a slightly different set of properties than the Moir-Anderson splitter [MA95], it is adaptive and long-lived. In addition, the new splitter properties enable the construction of a non-blocking long-lived (2k-1)-renaming algorithm (which is optimal in the size of the new name space). We believe that the mechanisms introduced in our splitter implementation are interesting on their own, and might be used in other adaptive and long-lived constructions. Received: March 2000 / Accepted July 2001  相似文献   

14.
自适应Ad hoc分布式互斥算法   总被引:1,自引:0,他引:1  
Ad hoc网络的动态拓扑结构和节点自组织给分布式算法的实现带来了诸多困难.针对Ad hoc分布式互斥算法研究滞后的现状,提出了一种自适应的Ad hoc分布式算法ADMUTEX. ADMUTEX算法基于令牌查询方法,它采用Lamport逻辑时戳保证消息的时序性,避免了节点饿死.同时,它在消息复杂度与同步延迟之间作了折衷,而且它不需要节点了解系统的全局信息,能够适应Ad hoc网络的动态拓扑结构和节点频繁出入的情况.分析与仿真结果表明该算法具有较低的消息复杂度、小响应延迟和公平性.  相似文献   

15.
一种新的分布式互斥请求集生成算法   总被引:4,自引:0,他引:4  
分布式互斥请求集的长度、对称性和生成的难易程度以及生成算法占用的空间及耗费的时间直接影响着基于该请求集的分布式互斥算法的消息复杂度、对称性和算法的应用规模。本文在基于循环编码的分布式互斥请求集生成算法的基础上,提出了一种增加算法初始化节点数量的对称分布式互斥请求集生成算法。其生成的请求集长度小于2N0.5,其时间复杂度也比基于循环编码的分布式互斥请求集生成算法小。因此,该算法较已有的分布式互斥请求集生成算法在性能上具有较大提高。  相似文献   

16.
A simple code transformation is presented that reduces the space complexity of Yang and Anderson's local-spin mutual exclusion algorithm. In both the original and the transformed algorithm, only atomic read and write instructions are used; each process generates Θ(logN) remote memory references per lock request, where N is the number of processes. The transformed algorithm uses Θ(N) distinct variables, which is clearly optimal.  相似文献   

17.
Minimizing energy dissipation and maximizing network lifetime are among the central concerns when designing applications and protocols for sensor networks. Clustering has been proven to be energy-efficient in sensor networks since data routing and relaying are only operated by cluster heads. Besides, cluster heads can process, filter and aggregate data sent by cluster members, thus reducing network load and alleviating the bandwidth. In this paper, we propose a novel distributed clustering algorithm where cluster heads are elected following a three-way message exchange between each sensor and its neighbors. Sensor’s eligibility to be elected cluster head is based on its residual energy and its degree. Our protocol has a message exchange complexity of O(1) and a worst-case convergence time complexity of O(N). Simulations show that our algorithm outperforms EESH, one of the most recently published distributed clustering algorithms, in terms of network lifetime and ratio of elected cluster heads.  相似文献   

18.
We present a decentralized, symmetric mutual exclusion algorithm that is tailored to the hypercube architecture. Our algorithm has better time complexity than a suitable hypercube adaptation of Maekawa′s O(√N) Mutual Exclusion algorithm. We show that, in the presence of contention, our algorithm has a shorter Blocking Delay than Maekawa′s algorithm. In the absence of contention, our algorithm achieves optimal Round-trip Delay under both the n-port and the one-port communication models.  相似文献   

19.
In the problem of mutual exclusion, concurrent access to a shared resource using a structural program abstraction called acritical section(CS) must be synchronized such that at any time only one process can enter the CS. In a distributed system, due to the lack of both a shared memory and a global clock, and due to unpredictable message delay, the design of a distributed mutual exclusion algorithm that is free from deadlock and starvation is much more complex than that in a centralized system. Based on different assumptions about communication topologies and a widely varying amount of information maintained by each site about other sites, several distributed mutual exclusion algorithms have been proposed. In this paper, we suvrey and analyze several well-known distributed mutual exclusion algorithms according to their related characteristics. We also compare the performance of these algorithms by a simulation study. Finally, we present a comparative analysis of these algorithms.  相似文献   

20.
We present an N-process local-spin mutual exclusion algorithm, based on nonatomic reads and writes, in which each process performs Θ(log N) remote memory references to enter and exit its critical section. This algorithm is derived from Yang and Anderson's atomic tree-based local-spin algorithm in a way that preserves its time complexity. No atomic read/write algorithm with better asymptotic worst-case time complexity (under the remote-mem-ory-refer-ences measure) is currently known. This suggests that atomic memory is not fundamentally required if one is interested in worst-case time complexity.The same cannot be said if one is interested in fast-path algorithms (in which contention-free time complexity is required to be O(1)) or adaptive algorithms (in which time complexity is required to depend only on the number of contending processes). We show that such algorithms fundamentally require memory accesses to be atomic. In particular, we show that for any N-process nonatomic algorithm, there exists a single-process execution in which the lone competing process accesses Ω(log N/log log N) distinct variables to enter its critical section. Thus, fast and adaptive algorithms are impossible even if caching techniques are used to avoid accessing the processors-to-memory interconnection network.This paper was invited for inclusion in the special issue of this journal based on selected papers presented in PODC '02 (Distributed Computing 18(1)).It appears separately because of a publication delay. Yong-Jik Kimreceived a B.S. degree in Physics/Computer Science from Korea Advanced Institute of Science and Technology in 1998, and a Ph.D.degree in Computer Science from the University of Notrh Carolina at Chapel Hill in 2003. He currently works for the RDBMS group in Tmax Soft, and is otherwise occupied with his newborn daughter Darum, which means “difference” in Korean. James H. Anderson is a professor in the Department of Computer Science at the University of North Carolina at Chapel Hill. He received a B.S.degree in Computer Science from Michigan State University in 1982, an M.S. degree in Computer Science from Purdue University in 1983, and a Ph.D. degree in Computer Sciences from the University of Texas at Austin in 1990. Before joining UNC-Chapel Hill in 1993, he was with the Computer Science Department at the University of Maryland between 1990 and 1993. Dr.Anderson's main research interests are within the areas of real-time systems and concurrent and distributed computing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号