首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PURPOSE: To determine the capacity of ionizing radiation to inhibit proliferation, to suppress c-myc expression and to induce apoptotic cell death in the p53 wild-type MCF-7 cell line and the p53 mutated MDA-MB231 cell line. MATERIALS AND METHODS: Growth inhibition and cell killing were determined by cell number and trypan blue exclusion. Apoptosis was assessed through cell morphology and fluorescent end-labelling. c-myc expression was monitored by Northern blotting. RESULTS: Inhibition of cell proliferation by ionizing radiation was similar in both cell lines. MDA-MB231 cells accumulated in G2 while MCF-7 cells accumulated in both the G1 and G2 phases of the cell cycle after irradiation. There was no evidence of apoptosis in either cell line. In MCF-7 cells, growth inhibition correlated closely with an early dose-dependent suppression of c-myc expression; in MDA-MB231 cells, there was no correspondence between growth inhibition and a transient, dose-independent reduction in c-myc message. CONCLUSIONS: These findings suggest that in the absence of classical apoptotic cell death, radiosensitivity is not predictably related to the p53 status of the cell. While both p53 and c-myc may be linked to the DNA damage response pathway, neither p53 nor c-myc are essential for growth arrest in response to ionizing radiation.  相似文献   

2.
Burkitt's lymphoma (BL) cell lines carry a translocated c-myc gene and, in 60-80% of cases, exhibit mutations in the p53 tumor suppressor gene. We examined the potential role of the p53 gene in BL tumorigenicity using an in vitro assay that measures p53-dependent cell cycle arrest in the G1 phase of the cell cycle and an in vivo athymic murine model that detects differences in the tumorigenicity of BL cell lines. A highly significant inverse correlation was found between the ability of BL cells to arrest in G1 after irradiation and their tumorigenicity in athymic mice, consistent with the notion that loss of p53 function is associated with increased tumorigenicity. Inactivation of wild-type (wt) p53 function by expression of the human papillomavirus E6 protein in the AG876V BL cell line, which carries both wt and mutant p53 proteins, rendered the cell line significantly more tumorigenic in athymic mice. Transfection of the wt p53 gene into the p53 mutant and highly tumorigenic BL-41 cell line caused it to acquire wt p53 function and rendered it less tumorigenic in mice. In addition to confirming a role for the loss of p53 function in tumor progression, the data demonstrate that wt p53 protein can reduce BL tumorigenicity in vivo.  相似文献   

3.
4.
In this report, we explore the mechanisms underlying cell cycle progression in T cells stimulated with an altered peptide ligand (APL) versus wild-type peptide. APL stimulation did not induce proliferation compared to wild-type peptide stimulation. To determine the point at which cell cycle progression is blocked, we have examined molecules responsible for regulating the retinoblastoma tumor suppressor gene product, pRb, which in its active state prevents G1/S progression. The majority of cells stimulated with an APL did not progress beyond G1; however, a small population did make the G1/S transition. These few cells passed the late G1 restriction point, divided and subsequently arrested at the next G1 phase. The lack of sustained signaling events following stimulation with an APL failed to induce cyclin E:cdk2 activity, a regulator which hyper-phosphorylates and inactivates pRb. Exogenous IL-2 addition did not compensate for the lack of proliferation following APL stimulation. Furthermore, the inability of the cells to enter S phase during partial T cell activation cannot be accounted for by p27Kip1 inhibition of cyclin E:cdk2 complexes. Upon APL stimulation, an increase in association of p27Kip1 with cyclin E:cdk2 complex was not observed, suggesting that instead, decreased cyclin E:cdk complex formation might contribute to the failure to progress from G1/S. Therefore, while for a majority of cells, wild-type stimulation results in cell cycle progression, APL stimulation is not sufficient to drive cells beyond G1.  相似文献   

5.
A unique feature of p21 that distinguishes it from the other cyclin-dependent kinase (CDK) inhibitors is its ability to associate with the proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerases delta and epsilon. While it is now well established that inhibition of cyclin/CDK complexes by p21 can result in G1 cell cycle arrest, the consequences of p21/PCNA interaction on cell cycle progression have not yet been determined. Here, we show, using a tetracycline-regulated system, that expression of wild-type p21 in p53-deficient DLD1 human colon cancer cells inhibits DNA synthesis and causes G1 and G2 cell cycle arrest. Similar effects are observed in cells expressing p21CDK-, a mutant impaired in the interaction with CDKs, but not in cells expressing p21PCNA-, a mutant deficient for the interaction with PCNA. Analysis of cells treated with a p21-derived PCNA-binding peptide provides additional evidence that the growth inhibitory effects of p21 and p21CDK result from their ability to bind to PCNA. Our results suggest that p21 might inhibit cell cycle progression by two independent mechanisms, inhibition of cyclin/CDK complexes, and inhibition of PCNA function resulting in both G1 and G2 arrest.  相似文献   

6.
The immunosuppressive macrolide, rapamycin, impedes the G1 to S cell cycle progression in cytokine-stimulated normal lymphocytes and in certain autonomously proliferating cell lines. Here, we found that the rapamycin-induced growth arrest augments homotypic aggregation in the YAC-1 T cell lymphoma. The growth arrest and increased aggregation were both blocked by the rapamycin antagonist, L-685,818, which interacts with the intracellular binding proteins mediating rapamycin's biochemical action. Moreover, rapamycin-induced aggregation was not seen in YAC-1 cells mutants selected for resistance to the drug's antiproliferative effect. Although the inhibition of G1/S progression induced by serum deprivation also resulted in increased cellular aggregation, cell cycle blockade in late G1 by mimosine, early S phase by hydroxyurea, or G2/M by nocodazole all failed to do so. Furthermore, the aggregation induced by rapamycin was blocked by antibodies to the alpha (CD11a) or beta (CD18) subunits of the integrin, LFA-1, or to its ligands, ICAM-1 and ICAM-2, and did not occur in LFA-1-deficient YAC mutants. However, the surface expression of LFA-1, ICAM-1, or ICAM-2 was not augmented in cells aggregated by rapamycin. Finally, the serine/threonine protein phosphatase inhibitor, okadaic acid, was found to abrogate rapamycin-induced aggregation. Therefore, rapamycin's impairment of YAC-1 cell growth in G1 is accompanied by enhanced LFA-1-mediated homotypic cell adhesion that may reflect an increase of the integrin's avidity for its ligands and may involve protein phosphorylation/dephosphorylation events. This suggests the existence of a link between cell cycle progression and "inside-out" LFA-1 signaling, possibly regulated by rapamycin's biochemical targets.  相似文献   

7.
8.
OBJECTIVE: To examine the effect of recombinant human transforming growth factor-beta 1 (rhTGF-beta 1) alone or recombinant human interleukin 6 (rhIL-6) alone or in combination on proliferation inhibition of the human leukaemia cell line. METHODS: In the present study, using the human monoblastic cell line (U937) and human promyelocytic cell line (HL60) as an in vitro model, we analyzed the effect of two cytokins on proliferation inhibition with rate of 3H-TdR incorporation, the cellular content of DNA, DNA indices, the cell cycle and the expression of c-myc mRNA. RESULTS: With administration of rhTGF-beta 1 and rhIL-6, U937 cell growth was inhibited and the rate of 3H-TdR incorporation inhibition was increased. There was a decrease in the cellular content of DNA and DNA indices. And no change in the cell cycle was observed after administration of rhTGF-beta 1 or rhIL-6. However, there was an increase in G0/G1 phase cells and a decrease in G2M + S phase cells after administration of combination of rhTGF-beta 1 and rhIL-6. It was also found that rhIL-6 could inhibit proliferative responses of HL60 cells, meanwhile the inhibition could be enhanced by rhTGF-beta 1. The rate of 3H-TdR incorporation inhibition rose up to 39.89%, and DNA index fell to 1.00 following induction by rhIL-6 plus rhTGF-beta 1. Furthermore, G0/G1 phase cells increased while G2M + S cells decreased. CONCLUSIONS: These results suggest that combination of rhTGF-beta 1 and rhIL-6 acted in synergy to inhibit proliferation of both U937 and HL60 cell lines. Molecular hybridization test show that rhTGF-beta 1 alone, rhIL-6 alone or rhTGF-beta 1 and rhIL-6 in combination can inhibit U937 and HL60 cells expression of c-myc mRNA in a time and dose dependent manner. rhTGF-beta 1 and rhIL-6 in combination synergistically inhibited c-myc expression, which may be one of the machanisms for the actions of the two cytokines.  相似文献   

9.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5 degreesC). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5 degreesC, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5 degreesC that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32 degreesC). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

10.
67Gallium (67Ga) is a radionuclide which accumulates in hematological malignancies and is used for diagnostic imaging. We investigated in this in vitro study the cell cycle dependency of cellular uptake and cytotoxicity of 67Ga. Cell cycle synchronization of cells was achieved by counterflow centrifugal elutriation and the use of cytostatic drugs. The human lymphoma cell lines U-937 and U-715 were used and in elutriation experiments we also used the leukemic cell line HL-60. The transferrin receptor (CD71) expression, 67Ga uptake and cell proliferation inhibition were the parameters measured. We also studied cytotoxicity in various schedules for combination of 67Ga and drugs and the residual proliferative capacity was measured. The CD71 expression in the three cell lines increased from 106-177% on S phase cells and from 118-233% on G2M cells, as compared to the G0/G1 cell fraction. The 67Ga uptake varied from 108-127% for S cells and 128-139% for G2M cells. The drugs chosen induced cell cycle phase accumulation in S and/or G2M phase during preincubation. 67Ga preincubation induced accumulation in the G2M phase. Almost all combinations of 67Ga and drugs resulted in a non-interactive effect, except for methotrexate which resulted in an antagonistic effect. No preferential effect of any of the incubation schemes was seen. CD71 expression and 67Ga uptake were increased in S and G2M cells. Combination of 67Ga with drugs which arrest cells in these cell cycle phases did not result in a change in cytotoxicity. However, these results implicate that 67Ga and the cytostatic drugs tested except for methotrexate might be used together or sequentially in therapy.  相似文献   

11.
Anti-idiotype (anti-Id) antibody can induce tumor dormancy in a murine B lymphoma, BCL1, by its ability to induce cell cycle arrest and apoptosis (negative signaling). In human B lymphoma, there is accumulating evidence that the antitumor effect of anti-Id or several other B cell-reactive antibodies relates to their ability to act as agonists rather than conventional effector antibodies. In this study, we sought to elucidate the role of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors in anti-IgM-induced cell cycle arrest to better understand the mechanisms underlying cancer dormancy. To accomplish this, we have performed in vitro studies with a human lymphoma cell line (Daudi) because its response to anti-Id (or anti-IgM) is similar to that of a BCL1 cell line, more reagents are available, and the results would be particularly pertinent to therapy of human B cell lymphomas. Our results show that cross-linking of membrane IgM on Daudi cells induces an arrest late in G1 and prevents pRb from becoming phosphorylated. The G1 arrest is correlated with an induction of the CDK inhibitor p21 and reduced CDK2 activity, although the level of CDK2 protein was not changed. Coprecipitation of CDK2 with p21 in anti-IgM-treated cells and the unchanged level of cyclin E suggest that p21 is responsible for the reduction of CDK2 activity and therefore blockade of the cell cycle. The induction of p21 was not accompanied by changes in p53 levels. As a result of the G1 block, cyclin A levels sharply declined by 24 h after anti-IgM treatment. There was no evidence for involvement of CDK4 or CDK6 in the blockade. These results provide evidence that membrane IgM cross-linking on Daudi cells induces expression of p21 and a subsequent inhibition of the cyclin E-CDK2 kinase complex resulting in a block to pRb phosphorylation and cell cycle arrest late in G1.  相似文献   

12.
The inappropriate expression of c-myc in cells deprived of growth factors has recently been implicated in the activation of programmed cell death (apoptosis). The studies described here examine the ability of interleukin-3 (IL-3) or erythropoietin (Epo) to suppress apoptosis that occurs in association with enforced myc expression during cell cycle arrest of a murine IL-3-dependent myeloid progenitor cell line, 32D. G1 arrest was observed when culturing 32D cells to high density in medium supplemented with IL-3, or at subconfluent densities in medium supplemented with Epo. Under both conditions, endogenous c-myc expression was downregulated and viability was maintained. In clones of cells in which c-myc is constitutively expressed from a retroviral vector, enforced c-myc expression was associated with the activation of apoptosis at high cell densities. Similarly, enforced c-myc expression was deleterious to cell survival when these cells were cultured in Epo, as apoptosis was evident within 6 hours. The results support the concept that inappropriate c-myc expression activates apoptosis and that neither IL-3 nor Epo can suppress this program under these conditions.  相似文献   

13.
The mechanism of the G0/G1 arrest and inhibition of proliferation by quinidine, a potassium channel blocker, was investigated in a tissue culture cell line, MCF-7, derived from a human breast carcinoma. The earliest measurable effect of quinidine on the cell cycle was a decrease in the fraction of cells in S phase at 12 hr, followed by the accumulation of cells in G1/G0 phases at 30 hr. Arrest and release of the cell cycle established quinidine as a cell synchronization agent, with a site of arrest in early G1 preceding the lovastatin G1 arrest site by 5-6 hr. There was a close correspondence among the concentration-dependent arrest by quinidine in G1, depolarization of the membrane potential, and the inhibition of ATP-sensitive potassium currents, supporting a model in which hyperpolarization of the membrane potential and progression through G1 are functionally linked. Furthermore, the G1 arrest by quinidine was overcome by valinomycin, a potassium ionophore that hyperpolarized the membrane potential in the presence of quinidine. With sustained exposure of MCF-7 cells to quinidine, expression of the Ki67 antigen, a marker for cells in cycle, decreased, and apoptotic and necrotic cell death ensued. We conclude that MCF-7 cells that fail to progress through the quinidine-arrest site in G1 die.  相似文献   

14.
15.
Recently we have shown that in fibroblasts (NIH 3T3 and Rat-1 cells) inhibition of protein geranylgeranylation leads to a G0/G1 arrest, whereas inhibition of protein farnesylation does not affect cell cycle distribution. Here we demonstrate that in human tumor cells the geranylgeranyltransferase-I (GGTase-I) inhibitor GGTI-298 blocked cells in G0/G1, whereas the farnesyltransferase (FTase) inhibitor FTI-277 showed a differential effect depending on the cell line. FTI-277 accumulated Calu-1 and A-549 lung carcinoma and Colo 357 pancreatic carcinoma cells in G2/M, T-24 bladder carcinoma, and HT-1080 fibrosarcoma cells in G0/G1, but had no effect on cell cycle distribution of pancreatic (Panc-1), breast (SKBr 3 and MDAMB-231), and head and neck (A-253) carcinoma cells. Furthermore, treatment of Calu-1, Panc-1, Colo 357, T-24, A-253, SKBr 3, and MDAMB-231 cells with GGTI-298, but not FTI-277, induced the protein expression levels of the cyclin-dependent kinase inhibitor p21WAF. HT-1080 and A-549 cells had a high basal level of p21WAF, and GGTI-298 did not further increase these levels. Furthermore, GGTI-298 also induces the accumulation of large amounts of p21WAF mRNA in Calu-1 cells, a cell line that lacks the tumor suppressor gene p53. There was little effect of GGTI-298 on the cellular levels of another cyclin- dependent kinase inhibitor p27KIP as well as cyclin E and cyclin D1. These results demonstrate that GGTase-I inhibitors arrest cells in G0/G1 and induce accumulation of p21WAF in a p53-independent manner and that FTase inhibitors can interfere with cell cycle events by a mechanism that involves neither p21WAF nor p27KIP. The results also point to the potential of GGTase-I inhibitors as agents capable of restoring growth arrest in cells lacking functional p53.  相似文献   

16.
N3T3 and P-3T3 cells, originally isolated from a NIH3T3 cell clone on the basis of their negative and positive transformation by v-Abl, v-Src and Bcr-Abl, were previously found to show distinct cyclin activity changes following 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, which is anti-mitogenic for N-3T3 cells and mitogenic for P-3T3 cells. We have found in this study that, while the G1/S arrest and cell death induced by serum starvation and TPA treatment in N-3T3 cells did not involve p53-mediated checkpoint or apoptosis, N-3T3 and P-3T3 cells evidently responded differently in these aspects of cell cycle regulation to DNA-damaging agents, methylmethane sulfonate (MMS) and gamma-radiation. In N-3T3 cells, DNA damages elicit cell growth arrest at G1/S transition with concomitant accumulation of p53 and p53-inducible Waf1/Cip1 proteins and also signs of apoptosis such as DNA ladder patterns and apoptotic (subgenomic) peak in flow cytograph. Conversely, P-3T3 cells treated with the DNA-damaging agents showed no cell cycle interruption nor accumulation of p53 or Waf1/Cip1. However, both P-3T3 and N-3T3 cells showed the same p53 protein half-life of 40 min or less, the same wild-type p53 DNA sequence and the same co-immunoprecipitable cellular proteins in complexes with p53, suggesting that an alteration in a signal transduction pathway upstream of p53 might account for the evasion of p53-mediated G1 checkpoint in P-3T3 cells.  相似文献   

17.
In this study we investigated the effects of Vpr during human immunodeficiency virus (HIV) infection of proliferating Jurkat T cells by using a vesicular stomatitis virus envelope G glycoprotein pseudotyped HIV superinfection system. We observe that the expression of Vpr results in a severe reduction in the life span of HIV type 1 (HIV-1)-infected dividing T cells in culture. In agreement with a recent report (S. A. Stewart, B. Poon, J. B. M. Jowett, and I. S. Chen, J. Virol. 71:5579-5592, 1997), we show that events characteristic of apoptotic cell death are involved in the Vpr-mediated cytopathic effects. Our results also show that infection with viruses expressing the wild-type vpr gene results in an increase in viral gene expression and production. Interestingly, the effects of Vpr on cell viability and on viral gene expression both correlate with the ability of the protein to induce a cell cycle arrest in the G2/M phase. Mutagenesis analyses show that the C terminus of Vpr is essential for these biological activities. Although the role of Vpr is currently associated with the infection of nondividing cells, our results suggest that Vpr can also directly increase viral replication in vivo in infected dividing T cells. Furthermore, these in vitro observations suggest that Vpr-mediated cytotoxic effects could contribute to the CD4+ depletion associated with AIDS progression.  相似文献   

18.
The cyclin-dependent kinase, proliferating cell nuclear antigen, and stress-activated protein kinase/c-jun NH2 terminal kinase inhibitor p21WAF1/CIP1 can induce G1 arrest, and its expression coincides with the cessation of replication in many systems. We examined expression of p21 during the early stages of carbon tetrachloride intoxication in the mouse liver and observed a dramatic increase in p21 RNA levels between 4 and 8 h after administration. p21 expression, visualized by in situ hybridization, is induced in pericentral hepatocytes before carbon tetrachloride-induced necrosis. Examination of c-fos and c-myc expression patterns confirm that these immediate-early genes are induced in similar regions of the mouse liver. p21 induction is not dependent on p53; we observed similar levels and localization of p21 in wild-type and p53 null animals. Immunohistochemical localization of p21 and CCAAT/enhancer-binding protein expression shows that p21 protein accumulation is limited to a subset of CCAAT/enhancer-binding protein-positive hepatocytes. A second peak of periportal and intermediate zone-specific p21 gene expression, appearing 1-2 days after injection, is also p53 independent and may represent cell cycle checkpoints or postmitotic growth arrest. Sporadic p21 expression was also detected in pairs of hepatocytes distributed throughout the liver acini in healthy animals. Together, these data suggest several roles for p21 in the liver in response to toxicity, regeneration, and growth inhibition.  相似文献   

19.
During eye development in Drosophila, cell cycle progression is coordinated with differentiation. Prior to differentiation, cells arrest in G1 phase anterior to and within the morphogenetic furrow. We show that Decapentaplegic (Dpp), a TGF-&bgr; family member, is required to establish this G1 arrest, since Dpp-unresponsive cells located in the anterior half of the morphogenetic furrow show ectopic S phases and ectopic expression of the cell cycle regulators Cyclins A, E and B. Conversely, ubiquitous over-expression of Dpp in the eye imaginal disc transiently inhibits S phase without affecting Cyclin E or Cyclin A abundance. This Dpp-mediated inhibition of S phase occurs independently of the Cyclin A inhibitor Roughex and of the expression of Dacapo, a Cyclin E-Cdk2 inhibitor. Furthermore, Dpp-signaling genes interact genetically with a hypomorphic cyclin E allele. Taken together our results suggest that Dpp acts to induce G1 arrest in the anterior part of the morphogenetic furrow by a novel inhibitory mechanism. In addition, our results provide evidence for a Dpp-independent mechanism that acts in the posterior part of the morphogenetic furrow to maintain G1 arrest.  相似文献   

20.
Limitation of nutrients allows yeast cells to arrest proliferation at G1 phase of the cell cycle and to enter the so-called stationary phase. We show here another pathway for cytostasis, which is associated with extracellular accumulation of bicarbonate and the resulting alkalisation of medium during the proliferation of cells respiring acetate. Alkalisation of medium by addition of bicarbonate or alkaline buffers ceased proliferation at G1 phase of logarithmically growing cells and caused a severe drop in G1-cyclin (CLN1 and CLN2) mRNAs. The arrested cells were heat-shock resistant, suggesting that the cells entered the stationary phase. Cells confluently grown on acetate re-entered into the cell cycle after acidification of the culture medium. These results indicate that external alkalisation is a primary cause of the cytostasis. The alkali-induced G1 arrest was shown to be cyclic AMP (cAMP)-independent using mutant cells which lack a functional Ras/cAMP signaling pathway. Alkalisation of medium also stimulated meiosis and sporulation in rich acetate medium, confirming our previous proposal that environmental alkalisation but not nitrogen limitation is a key condition for entry into meiosis and sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号