首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
To determine the most suitable types of sorghum for whole‐grain adjunct in lager beer brewing, 14 cultivars of five different types: white tan‐plant, white non‐tan‐plant, red non‐tannin, white tannin (type II) and red tannin (type III) were evaluated. The effects of grain type on wort physico‐chemical and sensory quality with raw grain and malt plus commercial enzyme mashing were assessed. Tannin content correlated significantly and negatively with wort extract and fermentable sugars (p < 0.001) and free amino nitrogen (FAN; p < 0.1). This is attributable to inactivation of the exogenous enzymes by the tannins during the mashing process. However, the type II tannin sorghums had wort quality attributes closer to the non‐tannin sorghum types, probably owing to their relatively low tannin content (≤1%). Malting gave a great improvement in wort extract, fermentable sugars and FAN, but substantially influenced wort sensory properties in terms of higher sourness, bitterness and astringency, as well as the expected more malty flavour. Worts from raw red non‐tannin sorghums were similar to those of white tan‐plant sorghums in both physico‐chemical and sensory quality. Thus, red non‐tannin sorghums, in view of their better agronomic quality, have considerable potential as a whole‐grain adjunct in lager beer brewing. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

2.
    
Using oats as a raw material in brewing has recently become the focus of increased interest. This is due to research findings that have shown that oats can be consumed safely by coeliac sufferers. It is also a response to consumer demand for products with novel sensory properties. In this study, beer was produced entirely from oat malt, from barley malt and from oat and barley malts mixed with various quantities of unmalted oats. Compared with barley wort, wort made from malted oats provided a lower extract content and had a higher protein content, but a lower free amino nitrogen content (FAN). The oat wort also showed increased viscosity and haze. The addition of unmalted oats during wort production produced significant changes in the physico‐chemical parameters of both oat and barley worts and beers. Unmalted oats caused an increase in wort viscosity and haze, and a reduction in total soluble nitrogen and FAN. Unmalted oats also contributed to lowering the concentration of higher alcohols and esters. Beer made from 100% oat and barley malts exhibited a similar alcohol content. The use of an oat adjunct in both cases resulted in a lower ethanol content. The introduction of enzyme preparations during the production of wort with oat adjunct had many benefits: increased extract content and FAN; a higher volume of wort; and a lower viscosity that led to faster wort filtration. This research suggests that the use of enzymes is necessary to make production using a high proportion of oats in the grist profitable. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

3.
以黑小麦为辅料酿造啤酒的初步研究   总被引:3,自引:0,他引:3  
刘杰璞  王德良  张五九 《酿酒》2006,33(3):97-99
以黑小麦为辅料进行啤酒酿造研究,并与使用大米作为辅料和全麦酿造的啤酒进行对照,结果显示以黑小麦为辅料制得的麦汁可溶性氮含量高、多酚含量明显下降,并且其成品啤酒泡持性好,酯香突出,所以选用黑小麦为啤酒辅料具有良好的应用前景。  相似文献   

4.
玉米淀粉在啤酒酿造中的使用   总被引:6,自引:0,他引:6  
玉米淀粉对于酿造师来说是一种最纯的淀粉原料 ,它没有得到广泛使用的原因主要是其价格比玉米粉或酿造大米昂贵 ,不过近几年来玉米淀粉的价格已接近大米的价格 ,为酿造师提供了良好的选择余地。玉米淀粉的蛋白质、脂肪、多酚含量很低 ,使用玉米淀粉作为辅料能延长啤酒的保质期、提高啤酒的风味稳定性、降低啤酒的色度。玉米淀粉可全部转化为可溶性物质 ,所以不会引起过滤问题。玉米淀粉应用的市场前景在很大程度上取决于其相对价格  相似文献   

5.
Sorghum varieties differed widely in their content of polyphenolic compounds. The concentrations of all phenolic compounds increased several-fold during malting and the degree of increase differed with variety. The concentration of polyphenols extracted in wort was dependent, to a great extent, on the temperature of mashing.  相似文献   

6.
    
Ferulic acid, a very attractive natural antioxidant is present in beer in free form, but the main form is the bound form as feruloylated oligosaccharides. Previous research showed that feruloylated oligosaccharides more effectively inhibited lipid and Low Density Lipoprotein oxidation than free ferulic acid. The aim of the present study was to evaluate free and bound ferulic acid concentrations throughout the brewing process in experimental mashes (worts, beers during fermentation, maturation and storage), and to conduct a comparison in commercial beers. Another aim of the study was to investigate methods to increase levels of bound ferulic acid in beer due to the potential health benefits. Specifically, the influence of commercial enzyme preparations on both forms of ferulic acid contents was studied. Five commercial enzyme preparations during mashing were examined: Celluclast, Shearzyme, Viscozyme, Cereflo and Ultraflo. In all experimental beers, the concentrations of esterified ferulic acid were 4–6 fold higher than the corresponding free ferulic acid contents, depending on the enzyme preparation used. Ferulic acid contents in the ester form in experimental beers were in the range of 748.4 mg/hL to 1244.3 mg/hL, whereas the contents of free ferulic acid were in the range of 134.6 mg/hL to 275.2 mg/hL. Comparison of free and bound ferulic acid contents in experimental beers, produced using enzyme preparations and commercial beers found in a local market, showed that concentrations of bound ferulic acid in experimental beers were significantly higher than in commercial beers, whereas concentrations of free ferulic acid in experimental and commercial beers were comparable.  相似文献   

7.
    
The sugar profile of wort from laboratory malted barley, malted sorghum, unmalted barley and unmalted sorghum grains mashed with commercial enzyme preparations were studied. Similar levels of glucose to maltose (1:7) were observed in wort of malted barley and malted sorghum. Mashing barley or sorghum grains with commercial enzymes changed the glucose to maltose ratio in both worts, with a greater change in wort from sorghum grains. Although hydrolysis with commercial enzymes released more glucose from maltose in sorghum wort, the same treatment retained more maltose in barley wort. Adding malted barley to sorghum grains mashed with commercial enzymes restored the glucose to maltose ratio in sorghum mash. Fermentation of wort produced from all barley malt (ABM) mash and commercial enzyme/barley malt/sorghum adjunct (CEBMSA) mash of similar wort gravity was also studied. ABM and CEBMSA worts exhibited similar glucose to maltose ratios and similar amino acid spectra. However, ABM released more individual amino acids and five times more proline than wort from commercial enzyme/barley malt/sorghum adjunct. ABM produced 27% more glucose and 7% more maltose than CEBMSA. After fermentation, ABM mash produced 9.45% ABV whilst commercial enzyme/barley malt/sorghum adjunct mash produced 9.06% ABV. Restoration of the glucose/maltose ratio in the CEBMSA mash produced wort with a sugar balance required for high gravity brewing. © 2020 The Institute of Brewing & Distilling  相似文献   

8.
    
The impact of using different combinations of unmalted barley, Ondea Pro® and barley malt in conjunction with a 35% rice adjunct on mashing performance was examined in a series of small scale mashing trials. The objective was to identify the potential optimal levels and boundaries for the mashing combinations of barley, Ondea Pro®, malt and 35% rice (BOMR) that might apply in commercial brewing. Barley and malt samples used for the trials were selected from a range of Australian commercial barley and malt samples following evaluation by small‐scale mashing. This investigation builds on previous studies in order to adapt the technology to brewing styles common in Asia, where the use of high levels of rice adjunct is common. Mashing with the rice adjunct, combined with differing proportions of barley, Ondea Pro® and malt, resulted in higher extract levels than were observed for reference mashing, using either 100% malt reference or 100% barley reference and Ondea Pro® enzymes. Synergistic mashing effects between barley, Ondea Pro® and malt were observed for mash quality and efficiency parameters, particularly wort fermentability. The optimum levels of barley in the grist (with the relative level of Ondea Pro®) were assessed to be in the range 45–55% when paired with 10–20% malt and 35% rice. When the proportion of malt was reduced below 10% of the grist, substantial reductions in wort quality were observed for wort quality parameters including extract, lautering, fermentability, free amino nitrogen and haze. Extension of this new approach to brewing with rice adjuncts will benefit from further research into barley varietal selection in order to better meet brewer's quality requirements for the finished beer. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

9.
The aim was to establish if a substantial increase in hydrophobic polypeptides could be achieved during high gravity mashing. When worts with gravities ranging from 5–20°P were analysed for hydrophobic polypeptide content it was found that there was no appreciable increase in hydrophobic polypeptide levels. Remashing of the spent grains from low and high gravity mashes demonstrated that this resulted from inefficient extraction of hydrophobic polypeptide levels during the mashing process. For example, wort produced from remashed high gravity spent grains contained 150 mg/L hydrophobic polypeptides compared to only 10 mg/L in the low gravity remashed spent grains. Experiments were conducted, employing standard mashing techniques, in an attempt to increase the extraction of hydrophobic polypeptides during high gravity mashing. Thus the use of gypsum, proteolytic stands, varying liquor to grist ratios and wheat malt addition were all investigated for their effect on hydrophobic polypeptide extraction during high and low gravity mashing. Wort analysis demonstrated that none of the techniques employed had a significant effect on hydrophobic polypeptide extraction. When wort from remashed spent grains was used as mashing in liquor for a fresh mash and the resultant worts analysed for hydrophobic polypeptides it was observed that no increase in hydrophobic polypeptide extraction was achieved. For example, wort from the remashed high gravity spent grains, containing 140 mg/L hydrophobic polypeptides, when used as mashing-in liquor, produced no increase in hydrophobic polypeptide levels in the resultant high gravity wort (230 mg/L) when compared to a high gravity wort produced using distilled water as mashing-in liquor (255 mg/L). It is therefore concluded that a saturation point has been reached and no more hydrophobic polypeptides can be extracted during mashing regardless of the procedures employed.  相似文献   

10.
啤酒酿造过程中有机酸的研究   总被引:3,自引:0,他引:3  
向阳  李崎  顾国贤 《酿酒科技》2005,(10):51-54,57
研究不同的糖化工艺对麦汁中有机酸含量的影响。通过改变原料状况(不同的辅料比、粉碎度)、糖化水pH、糖化温度、糖化时间等工艺参数,发现麦汁中的有机酸主要来自麦芽呼吸产生的酸,糖化过程中的酶解作用几乎不产生有机酸,且麦芽原始酸和总有机酸含量之间具有较好的线性关系(R^2=0.943)。麦汁煮沸时添加酒花和钙离子,可以使麦汁中的有机酸含量下降10%。  相似文献   

11.
Dimethyl sulphide in beer originates from a precursor in the malt. A method is described for the measurement of this precursor in brewing raw materials, wort and beer. The precursor levels in various green malts, kilned malts, and adjuncts are given. Excess methionine inhibits precursor uptake by yeast during fermentation. Residual precursor is still present in some commercial bottled beers.  相似文献   

12.
Lipase activity was monitored during malting and mashing of sorghum grains. All three sorghum varieties contained detectable lipase activity in the ungerminated form. Lipase activity changed only slightly during steeping for 24 hours but increased several fold in the course of germination. Between 24% and 60% of the lipase activity of the green malt was retained after kilning at 48°C but no activity was detected in the wort after mashing at 65°C. About 68% of the lipase activity of 72 hours old malt was detected in the plumule, while 29% and 3% were detected in the endosperm and radicle, respectively. Optimum activity was observed at pH 7.0.  相似文献   

13.
    
In the brewing industry, barley malt is often partially replaced with adjuncts (unmalted barley, wheat, rice, sorghum and corn in different forms). It is crucial, however, to preserve constant quality in the beer to meet the expectations of consumers. In this work, how the addition of corn grist (10 and 20%) influences the quality of wort and beer was examined. The following parameters were analysed: wort colour, dimethyl sulphide (DMS) and protein content, non‐fermentable extract, extract drop during fermentation, alcohol content and the attenuation level of the beer, together with filtration performance. The samples (all‐malt, and adjunct at 10 and 20% corn grist) were industrial worts and the beers produced in a commercial brewery (3000 hL fermentation tanks). The application of 10 and 20% corn grist had an effect on the wort colour, making it slightly lighter (11.1 and 10.5°EBC, respectively) than the reference barley malt wort (12.2°EBC). The free amino nitrogen level, DMS and non‐fermentable extract were significantly lower in the worts produced with the adjunct; the alcohol content and attenuation levels were higher in the beers produced with adjunct. The use of corn grist, at the level of up to 20% of total load, appears to affect some of the technological aspects of wort and beer production, but it does not significantly influence the final product characteristics. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

14.
稻谷开发利用--早籼米在啤酒酿造中的应用研究   总被引:2,自引:0,他引:2  
研究了以47%早籼米作为啤酒酿造辅助原料,通过添加耐高温α-淀粉酶,采用二次煮出法和圆筒锥形罐啤酒发酵的新工艺,不仅使所酿造的成品啤酒的各项指标符合GB/T4927-91标准,色浅,口味纯正、淡爽,泡沫洁白细腻,持久挂杯,而且具有较明显的经济和社会效益。  相似文献   

15.
该文通过试验研究,确定了75%高辅料的糖化工艺、麦汁16°P高浓度的发酵工艺、高浓稀释工艺。采用上述工艺不仅生产的产品质量达到GB4927标准,而且感官指标和风味都比较稳定。从而提高了现有设备的利用率,增加了产量,降低了成本,提高了企业的经济效益。  相似文献   

16.
    
Preliminary microbiological studies carried out on sorghum grains showed that the major microorganisms found were mainly bacteria and that aflatoxin‐producing fungi were not found. The effect of added commercial enzyme preparations and different infusion mashing temperatures on extract yield, from sorghum malted at 30 °C, was studied. The infusion mashing method (65 °C) developed for mashing well‐modified barley malt produces poor extract yields with sorghum malt. The extract yield from the sorghum malt in this study was very low with infusion mashing at 65 °C, without the addition of commercial enzyme preparations. A higher extract yield was obtained from the sorghum malt, without the commercial enzyme addition, when using infusion mashing at 85 °C. Both infusion mashing temperatures (65 and 85 °C) showed an improved extract yield over the control malt when commercial enzyme preparations were used during mashing of the sorghum malt. The added enzyme preparations resulted in a higher extract yield from the germinated sorghum when infusion mashing was performed at 65 °C over mashing at 85 °C. The use of individual commercial enzymes (α‐amylase, β‐glucanase, protease, xylanase, saccharifying enzyme and combinations of some hydrolytic enzyme) increased extract yields, when complemented with the enzymes that had developed in the sorghum malt. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

17.
    
Four sorghum varieties (SK 5912, KSV 4, KSV 8, ICSV 400) were malted and extracted under similar conditions to assess their quality for brewing. The results showed that, in general, the sorghum varieties had high malting loss which was attributed to the high germination temperature used. The sorghum varieties also developed low levels of amylolytic activity (α‐amylase and β‐amylase), and with similar ratios. When the sorghum malts were mashed at different temperatures with the aid of commercial enzyme preparations, it was observed that mashing temperatures were more important in sugar release than additions of commercial enzymes. This was because at the lower mashing temperature, sorghum starch was not adequately gelatinised. However, when commercial enzyme preparations were added, low levels of enzymes were very effective in reducing wort viscosity and producing free amino nitrogen (FAN). Although, both commercial enzyme preparation and mashing temperature influenced sugar production, the malts produced glucose and maltose at similar ratios. Therefore good quality malts can be produced from sorghum, however mashing will employ commercial enzymes and mashing regimes are not yet optimised.  相似文献   

18.
BP神经网络在协定法麦汁理化指标预测中的应用   总被引:1,自引:0,他引:1  
建立了协定法麦汁浊度、糖化力、黏度以及浸出率的BP神经网络预测模型,希望通过此模型能够预测在不同设定工艺变量条件下协定麦汁的主要理化指标.选取8组数据进行BP神经网络的训练仿真,并用2组未参加训练的数据进行验证.在均方差为0.001的条件下,网络于242次训练后收敛,模型训练的最大相对误差为2.58%,预测值的最大相对误差为10.08%,表明该模型具有良好的预测和仿真能力.  相似文献   

19.
对南北两地6个不同品种高粱的理化指标和酿造性能进行了检测。结果表明,6种高粱的淀粉和蛋白质含量都比较相近,差异在于其中的3种糯红高粱的直链淀粉均未检出,且支链淀粉含量很高,粗脂肪和单宁含量也较高,而3种北方粳高粱直链淀粉与支链淀粉比例接近,为1∶4.3,粗脂肪和单宁含量均较低。对样品高粱的吸水性能、糊化温度以及粘度进行检测,结果表明,其中的3种糯红高粱更适于酿酒。  相似文献   

20.
    
Mainstream lager beer brewing using the tropical cereals sorghum, maize and rice, either as malt or as raw grain plus commercial enzymes, is becoming widespread. This review examines the differences in composition between these tropical cereals and barley and their impact on brewing processes and beer quality. All of these cereals have a starch gelatinization temperature some 10 °C higher than barley. The sorghum prolamin proteins are particularly resistant to proteolysis owing to disulphide cross‐linking involving γ‐kafirin. Unlike barley, the major endosperm cell wall components in sorghum and maize are arabinoxylans, which persist during malting. The rice cell walls also seem to contain pectic substances. Notably, certain sorghum varieties, the tannin‐type sorghums, contain considerable levels of condensed tannins (proanthocyanidins), which can substantially inhibit amylases, and probably also other brewing enzymes. Tropical cereal malts exhibit a similar complement of enzymic activities to barley malt, with the notable exception of β‐amylase, which is much lower and essentially is absent in their raw grain. Concerning beer flavour, it is probable that condensed tannins, where present in sorghum, could contribute to bitterness and astringency. The compound 2‐acetyl‐1‐pyrroline, responsible for the popcorn aroma of maize and also the major aroma compound in rice, presumably affects beer flavour. However, much more research is needed into tropical cereals and beer flavour. Other future directions should include improving hydrolysis of prolamins into free amino nitrogen, possibly using prolyl carboxypeptidases and investigating tropical cereal lines with useful novel traits such as high amylopectin, high protein digestibility and low phytate. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号