首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present communication reports the ultra structural abnormalities in sperm of a fish species Cyprinus carpio inhabiting a polluted lake, Umiam in North‐East India. Transmission electron microscopy (TEM) revealed absence of differentiation between head and midpiece (neck) of some sperm while scanning electron microscopy (SEM) showed some sperm tails with highly reduced length and some sperm with folded tail. Abnormal shape of some sperm head was also revealed by Scanning electron microscopy. Detachment of membrane from some parts of the sperm head and an outward expansion of the same was observed from Transmission electron micrographs of transverse section of sperm head. The well developed mitochondria surrounding the cytoplasmic channel in the sperm tail, as observed in control were found to be drastically disorganized in fish inhabiting the polluted lake. The study suggests that the fish C. carpio inhabiting the polluted lake Umiam is under severe stress as far as its male reproductive system is concerned. The study further suggests that Electron microscopic approach is extremely important in the assessment of adverse effects of environmental pollution on fish tissue. Microsc. Res. Tech. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Electron and ion imaging of gland cells using the FIB/SEM system   总被引:1,自引:0,他引:1  
The FIB/SEM system was satisfactorily used for scanning ion (SIM) and scanning electron microscopy (SEM) of gland epithelial cells of a terrestrial isopod Porcellio scaber (Isopoda, Crustacea). The interior of cells was exposed by site-specific in situ focused ion beam (FIB) milling. Scanning ion (SI) imaging was an adequate substitution for scanning electron (SE) imaging when charging rendered SE imaging impossible. No significant differences in resolution between the SI and SE images were observed. The contrast on both the SI and SE images is a topographic. The consequences of SI imaging are, among others, introduction of Ga+ ions on/into the samples and destruction of the imaged surface. These two characteristics of SI imaging can be used advantageously. Introduction of Ga+ ions onto the specimen neutralizes the charge effect in the subsequent SE imaging. In addition, the destructive nature of SI imaging can be used as a tool for the gradual removal of the exposed layer of the imaged surface, uncovering the structures lying beneath. Alternative SEM and SIM in combination with site-specific in situ FIB sample sectioning made it possible to image the submicrometre structures of gland epithelium cells with reproducibility, repeatability and in the same range of magnifications as in transmission electron microscopy (TEM). At the present state of technology, ultrastructural elements imaged by the FIB/SEM system cannot be directly identified by comparison with TEM images.  相似文献   

3.
This work presents the male reproductive system morphology and histology of the water strider Gerris lacustris (Linnaeus 1758) (Gerridae, Heteroptera) using light microscopy and scanning electron microscopy. The male reproductive system of G. lacustris comprise of a pair of testes, two vasa deferentia, two seminal vesicles, an ejaculatory duct. There is no bulbus ejaculatorius and the long vas deferantia uniting to form a simple ductus ejaculatorius which is connected to the aedeagus. The testes are white colored and this cylindiric‐shaped structure lies along genital abdominal segment. The testicular follicles have three different development zones (growth zone, maturation zone, differentiation zone). Each testis has two follicles, which are not lined by a common peritoneal sheath and involving many cysts arranged in a progressive order of maturation from the distal to the proximal region; spermiogenesis occurs in mature males, finishing with the organization of sperm bundles. The testes are connected to the seminal vesicles, specialized sperm storage places, by the vas deferentia.  相似文献   

4.
In this study, microstructural characterization of Ti‐6Al‐4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross‐section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X‐ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X‐ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Microsc. Res. Tech. 76:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions. The study of intracellular vesicle compartmentalization is raising even more interest in the light of the importance of intracellular localization of mediators of the signaling in eliciting different biological responses. The study of the morphology of some intracellular organelles can supply information on the bio‐energetic status of the cells. TEM has also a pivotal role in the determination of different types of programmed cell death. In fact, the visualization of autophagosomes and autophagolysosomes is essential to determine the occurrence of autophagy (and also to discriminate micro‐autophagy from macro‐autophagy), while the presence of fragmented nuclei and surface blebbing is characteristic of apoptosis. SEM is particularly useful for the study of the morphological features of the cells and, therefore, can shed light, for instance, on cell–cell interactions. After a brief introduction on the basic principles of the main electron microscopy methods, the article describes some cell components with the aim to demonstrate the huge role of the ultrastructural analysis played in the knowledge of the relationship between function and structure of the biological objects. Microsc. Res. Tech., 76:1057–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Although scanning electron microscopy (SEM) has been broadly used for the examination of fixed whole insects or their hard exoskeleton‐derived structures, including model organisms such as Drosophila, the routine use of SEM to evaluate vulnerable soft internal organs and tissues was often hampered by their fragile nature and frequent surface contamination. Here, we describe a simple four‐step protocol that allows for the reliable and reproducible preparation of the larval and prepupal salivary glands (SGs) of Drosophila for SEM devoid of any surface contamination. The steps are to: first, proteolytically digest the adhering fat body; second, use detergent washes to remove contaminating coarse tissue fragments, including sticky remnants of the fat body; third, use nonionic emulsifying polysorbate emulsifiers to remove fine contaminants from the SGs surface; and fourth, use aminopolycarboxylate‐based chelating agents to detach sessile hemocytes. Short but repeated rinses in 100 μL of a saline‐based buffer between steps ensure efficient removal of remnants removed by each treatment. After these steps, the SGs are fixed in glutaraldehyde, postfixed in osmium tetroxide, dehydrated, critically point‐dried, mounted on aluminum stubs, sputter coated with gold–palladium alloy and examined in the SEM.  相似文献   

7.
The histomorphology of the reproductive system and the germ cells has been useful to establish phylogenetic relationships in many insects. However, these elements remain little known in the Curculionidae. In this study, histomorphological structure of the male reproductive system of Tanymecus dilaticollis, which is economically important, is described, illustrated using stereomicroscopy, light microscopy, and scanning electron microscopy techniques, and discussed in relation to other Coleoptera species. Results showed that distinctive features of the male reproductive system of T. dilaticollis consist of a pair of yellowish testes, a pair of seminal vesicles, a pair of vasa deferentia, an ejaculatory duct, accessory glands, prostate glands, and aedeagus. Each testis is subdivided into two testicular follicles, enclosed by a peritoneal sheath. Each follicle of the mature testes is full sperm cysts with germ cells at various stages development of spermatogenesis. The testes have four types of germ cells (spermatogonia, spermatocytes, spermatids, and spermatozoa). They are occupied by the growth zone containing spermatogonia and spermatocytes, the maturation zone containing spermatids, while differentiation zone containing spermatozoa. There is a seminal vesicle at the center of each testis. Most mature sperms are stored in the seminal vesicle. Each testis is attached to the vas deferens by a stalk‐like seminal vesicle. In the distal part, vasa deferentia fuse with the ejaculatory duct. It is linked to the aedeagus. The provided results will contribute to the understanding of the reproductive cell biology of Curculionidae.  相似文献   

8.
The urothelium forms the blood–urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno‐TEM), and freeze‐fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno‐FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues. Microsc. Res. Tech. 77:896–901, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
“Snow lotus” is a famous Chinese Materia Medica derived from species of the genus Saussurea (Compositae). To differentiate three representative easily‐confused snow lotus herbs, namely, Saussurea involucrata (Kar. et Kir.) Sch.‐Bip, Saussurea laniceps Hand.‐Mazz., and Saussurea medusa Maxim., macroscopic features of the three herbs were systemically observed, and microscopic features were compared by using ordinary light microscopy, polarized light microscopy and scanning electron microscopy (SEM). The results indicate that, as for macroscopic identification, capitula situation and arrangement, and as for microscopic identification, pollen grains, nonglandular hairs, glandular hairs, and cells of inner surface of the microdiodange can be used to authenticate the three snow lotus herbs. Comprehensive table comparing the characteristics were presented in this study. SEM has been found to provide a number of unique characteristics of pollen grains. Based on the observation of pollen grains, evolution sequence of the three species was speculated. The present method was proven to be efficient, convenient, simple, and reliable, which was successfully applied to the authentication of three snow lotus herbs. Microsc. Res. Tech.1 77:631–641, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Morphometric characterization of nanoparticles is crucial to determine their biological effects and to obtain a formulation pattern. Determining the best technique requires knowledge of the particles being analyzed, the intended application of the particles, and the limitations of the techniques being considered. The aim of this article was to present transmission (TEM) and scanning (SEM) electron microscopy protocols for the analysis of two different nanostructures, namely polymeric nanoemulsion and poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles, and to compare these results with conventional dynamic light scattering (DLS) measurements. The mean hydrodynamic diameter, the polydispersity index, and zeta potential of the nanostructures of polymeric nanoemulsion were 370.5 ± 0.8 nm, 0.133 ± 0.01, and ?36.1 ± 0.15 mV, respectively, and for PLGA nanoparticles were 246.79 ± 5.03 nm, 0.096 ± 0.025, and ?4.94 ± 0.86 mV, respectively. TEM analysis of polymeric nanoemulsion revealed a mean diameter of 374 ± 117 nm. SEM analysis showed a mean diameter of 368 ± 69 nm prior to gold coating and 448 ± 70 nm after gold coating. PLGA nanoparticles had a diameter of 131 ± 41.18 nm in TEM and 193 ± 101 nm in SEM. Morphologically, in TEM analysis, the polymeric nanoemulsions were spherical, with variable electron density, very few showing an electron‐dense core and others an electron‐dense surface. PLGA nanoparticles were round, with an electron‐lucent core and electron‐dense surface. In SEM, polymeric nanoemulsions were also spherical with a rough surface, and PLGA nanoparticles were round with a smooth surface. The results show that the “gold standards” for morphometric characterization of polymeric nanoemulsion and PLGA nanoparticles were, respectively, SEM without gold coating and TEM with negative staining. Microsc. Res. Tech. 77:691–696, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Classical electron microscopic morphological studies provide detailed ultrastructural information, which may lend insights into cellular functions. As a follow‐up to our morphological investigation of the adult zebrafish (Danio rerio) optic tectum, in this study, we have analyzed the ependymal structures lining the surfaces of the tectal ventricle: the torus, tegmental surface of the valvula cerebelli and the periventricular gray zone of the optic tectal cortex. We used toluidine blue stained plastic (semithin) sections for light microscopy and scanning electron microscopy. Our morphological findings of gated entrances and/or egresses indicate that, at least in the adult zebrafish brain, there may be a bidirectional direct flow communication between the ventricular cerebrospinal fluid and the parenchymal interstitial fluid.  相似文献   

12.
Through appropriate scanning electron microscope (SEM) processing, the shape and the surface structures of just‐mature eggs are preserved integrally for observation and measuring to guarantee accurate comparison and prediction on the phylogenetic relationships among three species of teleost, i.e. Acanthopagrus latus, Acanthopagrus schlegeli and Sparus sarba of Sparidae. Eggs in all three species can be categorized as type III eggs. Specifically, a regular pattern is found in the arrangement of micropyle and its surrounding pore canals from the inspected surface structures of the mature eggs in three species. Other than these similarities in egg surface structures, several differences in micropyle structures, micropyle region and size of pore canals are also observed in eggs of respective species. Comprehension and accurate data are statistically computed and analyzed through hierarchical cluster analysis to provide solid species‐specific evidences and standardized empirical reference for accurate species identification and phylogeny determination.  相似文献   

13.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

14.
Sperm quality has been studied using different microscopic methods. Light microscopy gives similar percentages of sperm typologies (mature, immature and aberrant) as scanning electron microscope (SEM) techniques using both normal (critical-point drying) and simple desiccation techniques. Artefactual forms, which are easily recognizable, are not taken into account. The artefactual forms observed by the simple desiccation SEM method were spermatozoa with tails folded in a simple loop, and spermatozoa with short tails coiled at their extreme. The simple desiccation SEM method is a useful and rapid technique for the testing of porcine sperm quality.  相似文献   

15.
Chlorhexidine, the most used biocide in periodontology, alters the permeability of the bacterial cell membrane. However, the chlorhexidine-induced morphological alterations in the oral biofilm have not been studied. To examine the effects of chlorhexidine on oral biofilm on an electron microscopic level, gingival epithelial cells with attached biofilm were collected from 10 volunteers, subjected to 0.1% chlorhexidine for 1 or 5 min, stained with ruthenium red-tetroxide, and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM visualized the bacterial glycocalyces and the biofilm matrix on the biofilm surface; however, no chlorhexidine-induced alterations were observed. TEM revealed loss of bacterial membrane integrity and fimbrial disintegration in a few bacteria. In the proximity of these alterations, a restricted matrix disintegration was also observed. However, the chlorhexidine-induced alterations only effected a minor part of the oral biofilm and did not cause its disintegration. These findings suggest the insufficient efficiency of chlorhexidine against oral biofilm.  相似文献   

16.
The cyst of Artemia has shell and membranous coverings over the embryo. The membranous coverings have special adaptive features to allow the physical changes accompanying repeated hydration and dehydration cycles that might occur and adversely influence postembryonic development. Whole and slices of cryptobiotic cysts were processed for electron microscopy to study the internal details and to compare the morphological architecture of three Artemia strains of South India. Surface topography of scanning electron microscopic (SEM) studies revealed distinct button shaped structures on the cyst of Puthalam strain. Transmission electron microscopic (TEM) studies of the cysts displayed the conventional pattern of anostracan crustaceans with outer cortex and alveolar layer, cuticular membranes, and the cytoplasmic inclusions namely nucleus, yolk droplets, lipoid bodies, and mitochondria. The prominent wavy outer cortex layer of Puthalam cysts corroborates the results of SEM studies.  相似文献   

17.
Iodine imparts strong contrast to objects imaged with electrons and X‐rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation‐deposition state‐change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas‐tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin‐embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X‐ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron‐ and photon‐sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc.  相似文献   

18.
The aim of this study, therefore, was to investigate the ultrastructure of gyrodactylid sensilla and to ascertain how these may be employed in the colonisation of new hosts using the Gyrodactylus gasterostei Gläser, 1974—Gasterosteus aculeatus L. model. As Gyrodactylus has no specific transmission stage in its life‐cycle, movement between hosts must be achieved by strategies employed by the adult. This study suggests that certain sensilla, presented for the first time in Gyrodactylus gasterostei, may serve as chemoreceptors and mechanoreceptors and possible photoreceptors. The results of this study provide photographic data using scanning electron microscope (SEM) and transmission electron microscopy (TEM) concerning the sensory structures that are found on the tegument and in the sub‐tegumental zone of G. gasterostei that infect 3‐spine sticklebacks (Gasterosteus aculeatus L.). For this reason, it is vital to understand the factors underlying transmission to a new host, and a detailed, ultrastructural examination of the sensory structures that are used may improve current understanding of the receptors that Gyrodactylus species employ to interpret both their host and ambient environments. Such information may assist in the interpretation of transmission behaviors, particularly their responses to chemical or physical cues which gyrodactylids employ in host location during the transmission process. Microsc. Res. Tech. 77:740–747, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
In present study, multiple microscope techniques were used for the systematics identification of the species Asplenium dalhousiae. The plant was collected from different phytogeographical and its natural habitat of Pakistan, where it shows higher diversity. Morphology, foliar epidermal anatomy, and spore morphological characters of the species were studied in detailed using multiple microscopic techniques through light microscopy (LM) and scanning electron microscopy (SEM). LM and SEM were used for the systematics identification of the species. Traditionally, the species is used in the ailment of many diseases, so the spore morphology, anatomical features, and morphological characters are relevant to describe the species taxonomy. The importance of multiple methods of taxonomic study (e.g., documentation and morphological characteristics) for characterizing herbs are important step in systematic certification to maintain the efficacy of herbal medicines. The aim of the present study is to examine the morphological, anatomical, and spore morphology of the species A. dalhousiae in more detailed for the correct taxonomic identification and their medicinal validation from Pakistan.  相似文献   

20.
When a new approach in microscopy is introduced, broad interest is attracted only when the sample preparation procedure is elaborated and the results compared with the outcome of the existing methods. In the work presented here we tested different preparation procedures for focused ion beam (FIB) milling and scanning electron microscopy (SEM) of biological samples. The digestive gland epithelium of a terrestrial crustacean was prepared in a parallel for FIB/SEM and transmission electron microscope (TEM). All samples were aldehyde-fixed but followed by different further preparation steps. The results demonstrate that the FIB/SEM samples prepared for conventional scanning electron microscopy (dried) is suited for characterization of those intracellular morphological features, which have membranous/lamellar appearance and structures with composition of different density as the rest of the cell. The FIB/SEM of dried samples did not allow unambiguous recognition of cellular organelles. However, cellular organelles can be recognized by FIB/SEM when samples are embedded in plastic as for TEM and imaged by backscattered electrons. The best results in terms of topographical contrast on FIB milled dried samples were obtained when samples were aldehyde-fixed and conductively stained with the OTOTO method (osmium tetroxide/thiocarbohydrazide/osmium tetroxide/thiocarbohydrazide/osmium tetroxide). In the work presented here we provide evidence that FIB/SEM enables both, detailed recognition of cell ultrastructure, when samples are plastic embedded as for TEM or investigation of sample surface morphology and subcellular composition, when samples are dried as for conventional SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号