首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The biochemical formation of yeast-derived sensory-active metabolites like higher alcohols and esters determines the different characteristics of aroma and taste in fermented beverages. In yeast fermentation process, a large number of environmental factors affecting the production of volatile aroma compounds are abundant. Factors like substrate composition in fermentation media as well as process parameters influencing these flavor-active metabolites have already been described. These factors can act on the expression of yeast genes involved in aroma metabolism resulting in concentration differences in esters and higher alcohols important for flavor and taste. The understanding of the function of genes involved in biosynthetic pathways of aroma-active substances as well as their regulatory mechanisms is needed to control the production of ester and higher alcohol synthesis to create specific aroma profiles in fermented beverages. This review discusses the known regulation and function of several individual genes (ATF1, ATF2, EEB1, EHT1, BAT1, BAT2 and BAP2) described in fusel alcohol and ester synthesis mainly in S. cerevisiae and S. pastorianus var. carlsbergensis. Also, different factors like oxygen and temperature that allow ester and higher alcohol synthesis to be controlled during yeast fermentation are described.  相似文献   

3.
The bottom‐fermenting lager yeast Saccharomyces pastorianus has been proposed to be allotetraploid, containing two S. cerevisiae (Sc)‐type and two S. bayanus (Sb)‐type chromosomes. This chromosomal constitution likely explains why recessive mutants of S. pastorianus have not previously been reported. Here we describe the construction of a ura3 deletion strain derived from the lager strain Weihenstephan34/70 by targeted transformation and subsequent loss of heterozygosity (LOH). Initially, deletion constructs of the Sc and Sb types of URA3 were constructed in laboratory yeast strains in which a TDH3p‐hygro allele conferring hygromycin B resistance replaced ScURA3 and a KanMX cassette conferring G‐418 resistance replaced SbURA3. The lager strain was then transformed with these constructs to yield a heterozygous URA3 disruptant (ScURA3+/Scura3Δ::TDH3p‐hygro, SbURA3+/Sbura3Δ::KanMX), which was plated on 5‐fluoroorotic acid (5‐FOA) plates to generate the desired Ura homozygous disruptant (Scura3Δ::TDH3p‐hygro/Scura3Δ::TDH3p‐hygro Sbura3Δ::KanMX/Sbura3Δ::KanMX) through LOH. This ura3 deletion strain was then used to construct a bottom‐fermenting yeast transformant overexpressing ATF1 that encodes an enzyme that produces acetate esters. The ATF1‐overexpressing transformant produced significantly more acetate esters than the parent strain. The constructed ura3? lager strain will be a useful host for constructing strains of relevance to brewing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography–mass spectrometry (GC–MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2‐phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2‐phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non‐Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
DNA microarray for comparative genome hybridization (CGH) of bottom‐fermenting yeast was performed based on our in‐house DNA sequence data. Aneuploidy, copy number variation and unique chromosomal structures were observed among bottom‐fermenting yeast strains. Our array experiments revealed a correlation between copy number variation and mRNA expression levels. Chromosomal structures in a Saccharomyces carlsbergensis‐type strain and in a S. monacensis‐type strain that both belong to S. pastorianus phylogenetically differed greatly from those in contemporary industrial bottom‐fermenting yeast strains. The knowledge gained in this study contributes to a more precise genomic characterization of bottom‐fermenting yeast strains. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

7.
8.
9.
Beer quality is largely guaranteed by a rational ratio of different flavour compounds. In this study, we present intracellular metabolic profiles in the light of lager beer flavour compound synthesis on an industrial scale. A total of 62 intracellular metabolites were identified and quantitatively analysed. Among these, amino acid was identified as the most dominant category of metabolites. We also report gene expression profiling of relevant genes encoding six representing amino acids, including serine, alanine, lysine, valine, leucine and asparagine. Nine genes involved in the amino acid synthesis – ALT1 , ALT2 , ASN1 , ASN2 , BAT1 , SER2 , SHM1 , SHM2 and LYA1 – displayed significantly higher level of expression at various fermentation stages in an industrial lager fermentation. However, concentrations of the recovered amino acids decreased towards the end of fermentation. Our results suggested that the defined amino acids could be assimilated by the yeast to be utilized for synthesis of aroma‐active metabolites at different stages in fermentation. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

10.
11.
The nucleotide sequences of alcohol acetyltransferase genes isolated from lager brewing yeast, Saccharomyces carlsbergensis have been determined. S. carlsbergensis has one ATF1 gene and another homologous gene, the Lg-ATF1 gene. There was a high degree of homology between the amino acid sequences deduced for the ATF1 protein and the Lg-ATF1 protein (75·7%), but the N-terminal region has a relatively low degree of homology. Southern analysis and contour-clamped homogeneous electric field analysis of Saccharomyces strains suggest that the ATF1 gene is located on chromosome XV in S. cerevisiae and that the Lg-ATF1 gene might originate from the ‘non-S. cerevisiae’ genome of S. carlsbergensis, which is similar to that of S. bayanus and S. pastorianus. The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank data banks with the Accession Numbers D63449 (ATF1) and D63450 (Lg-ATF1).  相似文献   

12.
Lager is generally brewed to minimise the final sugar content but despite this can have sweet characters. Such flavour notes have been ascribed to concentrations above flavour thresholds of certain volatile congeners: maltol; 4‐hydroxy‐2,5‐dimethyl‐3(2H)‐furanone (HDMF); 4‐hydroxy‐2(5)‐ethyl‐5(2)‐methyl‐3(2H)‐furanone (HEMF); hydroxymethylfurfural (HMF); diacetyl; and specific esters (ethyl acetate, ethyl caproate, ethyl caprylate, and iso amyl acetate). Relationships between scoring of sweetness in lagers and quantitative data on relevant congeners and ethanol were explored. Lagers (23) were scored for sweetness using rank rating and in 18 lagers ten relevant volatile congeners were quantified by gas chromatography. Relationships between sensory and compositional data were modelled. Multiple linear regression was less successful than partial least squares regression (PLS1) based on four principal factors. Calibration values for r2were 0.70 and 0.77, when ester data was excluded and included, and validation values were 0.56 and 0.45, respectively. Prediction was improved to a validation r2= 0.74 when an artificial neural network was used in modelling with the complete compositional data set. It was concluded that in lagers a range of congeners and ethanol contribute in a complex manner to perceptions of sweetness and the relationship with 4‐hydroxyfuranone derivatives merits revaluation.  相似文献   

13.
14.
15.
Esters and higher alcohols produced by yeast during the fermentation of wort have the greatest impact on the smell and taste of beer. Alcohol acetyltransferase, which is mainly encoded by the ATF1 gene, is one of the most important enzymes for acetate ester synthesis. Cytosolic branched-chain amino acid aminotransferase, on the other hand, which is encoded by the BAT2 gene, plays an important role in the production of branched-chain alcohols. The objective of this study is to construct engineered brewer’s yeast strains that produce more acetate esters and less higher alcohols. Industrial brewer’s yeast strain S5 was used as the parental strain to construct ATF1 overexpression and BAT2 deletion mutants. The engineered strains S5-2 and S5-4, which feature partial BAT2 allelic genes replaced by the constructed ATF1 overexpression cassette, were obtained. The ester production of the engineered strains was observed to increase significantly compared with that of the parental cells. The concentrations of ethyl acetate produced by the engineered strains S5-2 and S5-4 increased to 78.88 and 117.40 mg L?1, respectively, or about 7.7-fold and 11.5-fold higher than that produced by parental S5 cells. The isoamyl acetate produced by S5-2 and S5-4 also increased to 5.14 and 9.25 mg L?1, respectively; by contrast, no isoamyl acetate was detected in the fermentation sample of the parental strain S5. Moreover, S5-2 and S5-4, respectively, produced about 65 and 51 % of higher alcohols produced by the parental strain. The increase in acetate ester content and decrease in higher alcohol concentration shown by the engineered brewer’s yeast strains at the end of fermentation process indicate that the new strains are useful in future developments in the wheat beer industry.  相似文献   

16.
The comprehensive flavour characterisation and volatile compounds of raw L. edodes, hot water blanching (HB) sample and microwave blanching (MB) sample were comparatively analysed by electronic nose technology and headspace solid‐phase micro‐extraction combined with gas chromatography‐mass spectrometry (HS‐SPME‐GC‐MS). Results indicated that volatile components in L. edodes markedly changed after HB and MB. Volatile compounds of raw L. edodes consisted mainly ketones, sulphide and alcohols, and 3‐octanone, as well as 1‐octen‐3‐one, were the major compounds. The content of ketones and sulphides in blanched samples markedly decreased, while the relative content of aldehydes, hydrocarbons and esters increased, which became the major volatile compounds of treatment samples. In addition, the percentage contents of esters, alcohols and sulphides in MB samples were significantly (P < 0.05) higher than that in HB samples, especially 1‐octen‐3‐ol, which contributes more to mushroom flavour. Therefore, MB is a better pretreatment method of L. edodes processing and cooking according to the results of experiment.  相似文献   

17.
The aim of this study was to develop a method for simultaneous detection of a variety of genetically modified (GM) rice ingredients in foods using multiplex polymerase chain reaction (PCR) coupled with high-performance liquid chromatography (HPLC) assay. The following exogenous genes found in GM rice were selected as targets: CaMV35S, NOS, Cry1Ac, Bar, and Xa21. The endogenous gene PEPCex of rice was selected as an internal control. In brief, six pairs of primers for multiplex PCR were designed according to the specific region of CaMV35S, NOS, Cry1Ac, Bar, Xa21, and PEPCex, and following the optimization, a multiplex PCR assay was developed, and then the multiplex PCR products were subjected to HPLC analysis. The GM rice lines ShanYou 63, KeFeng 6, KangYou 97, and LLrice 62 were used as reference GM rice samples to evaluate the potential diagnostic capability of the method. Results demonstrated that the multiplex PCR-HPLC developed in this work was an efficient diagnostic method for simultaneous identification of the target genes with 0.15 ng/mL of high sensitivity, suggesting a better alternative for the rapid detection of many genetic modification events.  相似文献   

18.
19.
Sequences of two internally transcribed spacer regions between 18S and 28S rRNA genes were determined to assess the phylogenetic relationship in the strains belonging to the genus Saccharomyces. The sequences of S. bayanus and S. pastorianus were quite similar, but not identical. Two phylogenetic trees constructed by the neighbor-joining method showed that all the species examined were distinguished from one another. The Saccharomyces sensu stricto species: S. cerevisiae, S. bayanus, S. paradoxus and S. pastorianus, were closely related and far from the Saccharomyces sensu lato species including S. barnetti, S. castellii, S. dairensis, S. exiguus, S. servazzii, S. spencerorum and S. unisporus, and an outlying species, S. kluyveri. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Two distinct genetic groups (Saaz and Frohberg) exist within the hybrid Saccharomyces pastorianus (S. cerevisiae × S. eubayanus) taxon. However, physiological/technological differences that exist between the two groups are not known. Fermentative capability of the parental S. eubayanus has likewise never been studied. Here, 58 lager strains were screened to determine which hybrid group they belonged to, and selected strains were characterized to determine salient characteristics. In 15 °P all‐malt wort fermentations at 22 °C, Frohberg strains showed greater growth and superior fermentation (80% apparent attenuation, 6.5% alcohol by volume in 3–4 days) compared to all other strains and maintained highest viability values (>93%). Fermentation with S. eubayanus was poor at the same temperature (33% apparent attenuation, 2.7% alcohol by volume at 6 days and viability reduced to 75%). Saaz strains and S. eubayanus were the least sensitive to cold (10 °C), though this did not translate to greater fermentation performance. Fermentation with S. eubayanus was poor at 10 °C but equal to or greater than that of the Saaz strains. Performance of Saaz yeast/S. eubayanus was limited by an inability to use wort maltotriose. [14C]‐Maltotriose transport assays also showed negligible activity in these strains (≤0.5 µmol min?1 g?1 dry yeast). Beers from Saaz fermentations were characterized by two‐ to sixfold lower production of the flavour compounds methyl butanol, ethyl acetate and 3‐methylbutyl acetate compared to Frohberg strains. Higher alcohol and ester production by S. eubayanus was similar to that of Frohberg strains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号