首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the ultrastructural features and 3D electron tomography of chameleon (Chamaeleon calyptratus) which is a native of desert environments of Saudi Arabia. The corneas of the chameleon were fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer for electron microscopy and tomography, and observed under a JEOL 1400 transmission electron microscope. The thin cornea (21.92 μm) contained 28–30 collagen fibril lamellae. The middle stromal lamellae (from 13 to 19) contained keratocytes with a long cell process and filled with granular material. The CF diameter increased from lamella 1 (30.44 ± 1.03) to Lamella 5 (52.83 ± 2.00) then decreased towards the posterior stoma. The percentage of large CF diameters (55–65 nm) was very high in the lamellae L14 (38.8%) and L15 (85.7%). The mean PGs area of the posterior stroma (448.21 ± 24.84 nm2) was significantly larger than the mean PGs area of the anterior, (309.86 ± 8.2 nm2) and middle stroma 245.94 ± 8.28 nm2). 3D electron tomography showed the distribution of PGs around and over the CF. Variable diameters of CFs in the anterior stroma may provide compact lamellae which may restrict the low wavelength of light. Variable diameters of CFs in the anterior stroma may provide compact lamellae which may restrict the low wavelength of light. This accommodation function is achieved by bending of the cornea. During bending the anterior stroma was stretched and the posterior stroma was compressed due to the presence of small CFs. The middle stroma remained stiff due to the presence of large CFs. Large proteoglycans not only maintain hydration for a longer period of time, but also act as a lubricant to neutralise the shear forces in the anterior and posterior stroma during bending.  相似文献   

2.
Cell density in the corneal stroma is typically determined by counting the number of bright objects, presumably keratocyte nuclei, in images from clinical confocal microscopy. We present a program that identifies bright objects and counts those that most likely represent cells. Selection variables were determined from 125 normal corneas with cell densities that had been assessed manually. The program was tested on 17 corneas of patients before and at several intervals to 5 years after laser in situ keratomileusis (LASIK) surgery. In these corneas, which showed a decrease in cell density after surgery, the program identified cells as well as human observers did.  相似文献   

3.
“Sumali,” as an imported cobalt ore from overseas, was a sort of precious and valuable pigment used for imperial kilns only, which produces characteristic “iron spot” to blue‐and‐white porcelain in early Ming Dynasty (A.D. 14th–15th century). Although there were some old studies on it, the morphology and formation of iron spot has not been fully investigated and understood. Therefore, five selected samples with typical spot from Jingdezhen imperial kiln in Ming Yongle periods (A.D. 1403–1424) were analyzed by various microscopic analysis including 3D digital microscope, SEM‐EDS and EPMA. According to SEM images, samples can be divided into three groups: un‐reflected “iron spot” without crystals, un‐reflected “iron spot” with crystals and reflected “iron spot” with crystals. Furthermore, 3D micro‐images revealed that “iron spots” separate out dendritic or snow‐shaped crystals of iron only on and parallel to the surface of glaze for which “iron spot” show strong metallic luster. Combining with microscopic observation and microanalysis on crystallization and non‐crystallization areas, it indicates that firing oxygen concentration is the ultimate causation of forming reflective iron spot which has a shallower distribution below the surface and limits crystals growing down. More details about characters of “iron spot” used “Sumali” were found and provided new clues to coloration, formation mechanism and porcelain producing technology of imperial kiln from 14th to 15th centuries of China.  相似文献   

4.
5.
Immunohistochemical detection of cross‐linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on‐section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New®. It was possible to cut thin (1 μm) sections of mineralized teeth, and immunofluorescence characterization of cross‐linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was “patchy” and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on‐section protein detection but importantly for detecting cross‐linked fibrous collagens in both soft and mineralized tissue sections. Microsc. Res. Tech. 73:741–745, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Introduction: The corneal tissue was processed in fixatives and embedded in resin for transmission electron microscopy to observe the ultrastructure of the collagen fibrils (CFs). The effect of these processing methods on the CF diameter and the interfibrillar spacing was studied. Methods: Four normal human corneal buttons were used for this study. A part of each cornea was fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer and embedded in spurr's resin (SpurrCB). A second part of each cornea was fixed in 2.5% glutaraldehyde + osmium tetroxide and embedded spurr's resin (SpurrOsm). The third part of each cornea was fixed in paraformaldehyde (4%) and embedded in LR White at 4°C (LRWhite). Ultrathin sections were stained with uranyl acetate and lead citrate. Results: In the tissue, fixed in SpurrCB, the diameter was 38.4 ± 5.9 nm and spacing between CF was 52.5 ± 5.3 nm. In the tissue fixed in SpurrOsm, the diameter was 28.37 ± 5.84 nm and spacing between CF was 45 ± 4.57 nm. In the tissue fixed in LR White, the CF diameter was 24 ± 2.3 nm and spacing between CF was 39.0 ± 4.2 nm. The diameters and interfibrillar spacing of the tissue processed by SpurrCB, SpurrOsm, and LRWhite were significantly different (P < 0.001) from one another. Conclusion: Our study shows that there is a variation in the CF diameter and spacing depending on the method of fixation and embedding resins used. This needs to be considered when comparative studies using different methods are done. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Portable confocal scanning optical microscopy (PCSOM) has been specifically developed for the noncontact and nondestructive imaging of early human fossil hard tissues, which here we describe and apply to a 3‐million‐year‐old femur from the celebrated Ethiopian skeleton, “Lucy,” referred to Australopithecus afarensis. We examine two bone tissue parameters that demonstrate the potential of this technology. First, subsurface reflection images from intact bone reveal bone cell spaces, the osteocyte lacunae, whose density is demonstrated to scale negatively with body size, reflecting aspects of metabolism and organismal life history. Second, images of a naturally fractured cross section near to Lucy's femoral mid‐shaft, which match in sign those of transmitted circularly polarized light, reveal relative collagen fiber orientation patterns that are an important indicator of femoral biomechanical efficacy. Preliminary results indicate that Lucy was characterized by metabolic constraints typical for a primate her body size and that in her femur she was adapted to habitual bipedalism. Limitations imposed by the transport and invasive histology of unique or rare fossils motivated development of the PCSOM so that specimens may be examined wherever and whenever nondestructive imaging is required. SCANNING 31: 1–10, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
A modified tandem scanning confocal microscope was used for real-time in vivo examination of the rabbit cornea following a cryogenic injury. The corneas of New Zealand white rabbits were frozen with aprobe that had been cooled by immersion in liquid nitrogen, effectively destroying keratocytes in a central 5 mm diameter zone throughout the total thickness of the cornea. In these eyes, keratocyte repopulation and corneal stromal wound healing proceeded similarly to that which occurs after epikeratophakia, a refractive surgical procedure designed to change the curvature and optical power of the cornea. In epikeratophakia, a cryolathed donor corneal stroma lenticule is sutured onto the bare stroma of the recipient cornea. The collagen tissue lenticule is repopulated by keratocytes (corneal fibroblasts) that migrate in from the host cornea. In our study, the confocal microscope permitted sequential, noninvasive examination of the corneal stroma in the treated animals. Necrosis of the keratocytes, followed by activation of the remaining viable cells in the corneal periphery, was observed in the first 2 to 3 days after cryo injury. A fine stromal fibrous network was seen to develop; in three eyes, this network progressed to the development of a retrocorneal fibrous membrane and dense stromal fibrosis, both of which resulted in significant loss of corneal clarity. Our results suggest that the confocal microscope may be a valuable tool to provide much needed information on wound healing processes at the cellular level after corneal surgery and injury.  相似文献   

9.
A modified tandem scanning confocal microscope was used for real-time in vivo examination of the rabbit cornea following a cryogenic injury. The corneas of New Zealand white rabbits were frozen with a probe that had been cooled by immersion in liquid nitrogen, effectively destroying keratocytes in a central 5 mm diameter zone throughout the total thickness of the cornea. In these eyes, keratocyte repopulation and corneal stromal wound healing proceeded similarly to that which occurs after epikeratophakia, a refractive surgical procedure designed to change the curvature and optical power of the cornea. In epikeratophakia, a cryolathed donor corneal stroma lenticule is sutured onto the bare stroma of the recipient cornea. The collagen tissue lenticule is repopulated by keratocytes (corneal fibroblasts) that migrate in from the host cornea. In our study, the confocal microscope permitted sequential, noninvasive examination of the corneal stroma in the treated animals. Necrosis of the keratocytes, followed by activation of the remaining viable cells in the corneal periphery, was observed in the first 2 to 3 days after cryo injury. A fine stromal fibrous network was seen to develop; in three eyes, this network progressed to the development of a retrocorneal fibrous membrane and dense stromal fibrosis, both of which resulted in significant loss of corneal clarity. Our results suggest that the confocal microscope may be a valuable tool to provide much needed information on wound healing processes at the cellular level after corneal surgery and injury.  相似文献   

10.
AIMS: To evaluate measurements of collagen fibril spacing using different shaped regions of interest (ROI) on transmission electron micrograph (TEM) images of rabbit corneal stroma. METHODS: Following glutaraldehyde fixation and phosphotungstic acid staining, TEM images of collagen fibrils in cross section were projected at a final magnification close to 250,000 × to obtain overlays. Interfibril distances (IFDs; center‐to‐center spacing) were measured within different ROIs of the same nominal area (0.25 μm2) but different shape (with the length to width, L:W, ratio from 1:1 to 6:1). The IFD distribution was analyzed, and the 2D organization assessed using a radial distribution analysis. RESULTS: The fibrils had an average diameter of 35.3 ± 3.8 (SD) nm, packing density of 393 ± 4 fibrils / μm2 and a fibril volume fraction of 0.39 ± 0.02. IFDs ranged from 29 to 1400 nm depending on the shape of the ROI, with average values ranging from 263 to 443 nm. By artificially selecting IFD data only to a radial distance of 250 nm, the average IFDs were just 145–157 nm. The radial distributions, to 250 nm, all showed a nearest neighbors first peak which shifted slightly from predominantly at 45–54 nm with more rectangular ROIs. The radial distribution profiles could be shown to be statistically different if the ROI L:W ratio was 2:1 or greater. CONCLUSION: Selection of an ROI for assessment of packing density and interfibril distances should be standardized for comparative assessments of TEMs of collagen fibrils. Microsc. Res. Tech., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Protein post‐translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the “bottom‐up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, “top‐down” MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top‐down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post‐translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed. © 2012 Wiley Periodicals, Inc., Mass Spec Rev 32:27–42, 2013  相似文献   

12.
We were able to observe in vitro the fine structure of the rabbit cornea using a laser scanning confocal microscope, especially in the regions between Descemet's membrane and the epithelial basal lamina. We observed submicrometre filaments throughout the stroma with high concentrations adjacent to Descemet's membrane, and found extensive interconnecting processes between stromal keratocytes. There are numerous regions containing nerve plexuses in the stroma. We found a deeply convoluted basal lamina adjacent to the epithelium, and observed regions containing junctions between endothelial cells in fluorescent images of rabbit corneas stained with the actin-specific compound fluorescein phalloidin.  相似文献   

13.
The sharpness of atomic force microscope (AFM) tips is essential for acquiring high quality AFM images. However, AFM tips would easily get contaminated during scanning and storage at ambient condition, which influences image resolution and causes image distortion. Replacing the probe frequently is a solution, but uneconomical. To solve this problem, several tip cleaning methods have been proposed but there is space for further improvement. Therefore, this article developed a method of tip cleaning by using a one‐dimensional grating (600 lines/mm) as a micro‐washboard to “wash” contaminated tips. We demonstrate that the contaminants can be scrubbed away by rapidly scanning such micro‐washboard against the tip in the aids of Z‐dithering (10–20 Hz) exerted on the washboard. This method is highly efficient and proved to be superior to traditional ones. Experiments show that AFM images acquired with “washed” tips have higher resolution and less distortion compared with images acquired using contaminated tips, even comparable to those scanned by new ones. Microsc. Res. Tech. 76:1131–1134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
There continues to be a paucity of data regarding the nanostructural changes of vocal fold (VF) collagen after injury. The aim of this study is to investigate the nanostructural and morphological changes in the rabbit VF lamina propria following acute injury using atomic force microscopy (AFM). Unilateral VF injury was performed on 9 New Zealand breeder rabbits. Sacrifice and laryngeal harvest were performed at three time points: 1 day, 3 days, and 7 days after injury. Histology and immunohistochemistry data were collected to confirm extracellular matrix (ECM) changes in rabbit VF. The progressive changes in thickness and D‐spacing of VF collagen fibrils were investigated over a 7‐day postinjury period using AFM. At post‐injury day 1, a fibrin clot and inflammatory cell infiltration were observed at the injured VF. The inflammatory score at postinjury day 1 was highest in injured VF tissue, with a significant decrease at postinjury day 7. The immunoreactivity of inflammatory proteins (COX‐2, TNF‐α) was observed in VF up to day 7 after injury. AFM investigation showed clustered and disorganized collagen fibrils at the nanoscale resolution at post‐injury day 7. Collagen fibrils in injured VF at postinjury day 7 were significantly thicker than control and postinjury days 1 and 3 (P < 0.001). D‐spacing of collagen at postinjury day 7 was not studied due to loss of distinct edges resulting from immature collagen deposition. AFM investigation of VF could add valuable information to understanding micromechanical changes in VF scar tissue. Microsc. Res. Tech. 78:569–576, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The poor integration with host cornea tissue and the low mechanical properties of pHEMA hydrogel for artificial cornea remains a difficult problem to solve. A modified pHEMA hydrogel, MMA copolymerized and type‐I collagen and bFGF immobilized, was previously prepared in an attempt to solve the problems. In this study, the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) and p (HEMA‐MMA) was studied by cell adhesion assay and atomic force microscopy (AFM). The results of cell adhesion assay show that the attachment of keratocytes on the modified membrane is much higher than that of the unmodified membrane. This indicates that the material after modification have better cell–material interaction. The AFM images reveal that the morphology of keratocytes cultured on different substrate is obviously different. The cell cultured on modified membrane presented a completely elongated and spindle‐shape morphology. The force?distance indicates that the biomechanical of keratocytes changes significantly after culturing on different substrates. The adhesion force (2328±523 pN) and Young's modulus (0.51±0.125 kPa) of the cell cultured on modified membrane are much higher, and the stiffness (0.08±0.022 mN/m) is lower than those of the cell cultured on unmodified membrane. These results show that the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) for keratocytes is much improved. SCANNING 31: 246–252, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The aim of this work is to demonstrate that multiphoton microscopy is a preferred technique to investigate intact cornea structure without slicing and staining. At the micron resolution, multiphoton imaging can provide both large morphological features and detailed structure of epithelium, corneal collagen fibril bundles and keratocytes. A large area multiphoton cross-section across an intact eye excised from a GFP mouse was obtained by a homebuilt multiphoton microscope. The broadband multiphoton fluorescence (435-700 nm) and second harmonic generation (SHG, 360-400 nm) signals were generated by the 760 nm output of a femtosecond titanium-sapphire laser. A water immersion objective (Fluor, 40X, NA 0.8; Nikon) was used to facilitate imaging the curve ocular surface. The multiphoton image over entire cornea provides morphological information of epithelial cells, keratocytes, and global collagen orientation. Specifically, our planar, large area multiphoton image reveals a concentric pattern of the stroma collagen, indicative of the laminar collagen organization throughout the stroma. In addition, the green fluorescence protein (GFP) labeling contributed to fluorescence contrast of cellular area and facilitated visualizing of inactive keratocytes. Our results show that multiphoton imaging of GFP labeled mouse cornea manifests both morphological significance and structural details. The second harmonic generation imaging reveals the collagen orientation, while the multiphoton fluorescence imaging indicates morphology and distribution of cells in cornea. Our results support that multiphoton microscopy is an appropriate technology for further in vivo investigation and diagnosis of cornea.  相似文献   

17.
Three-dimensional maps of cellular metabolic oxidation/reduction states of rabbit cornea in situ were obtained by imaging the fluorescence of the naturally occurring reduced pyridine nucleotides (both reduced nicotinamide-adenine dinucleotide, NADH, and reduced nicotinamide-adenine dinucleotide phosphate, NADPH, denoted here as NAD(P)H). Autofluorescence images with submicrometre lateral resolution were obtained throughout the entire 400 μm thickness of the cornea. Two-photon excitation scanning laser microscopy with near-infrared excitation provided high fluorescence collection efficiency, reduced photodamage, and eliminated ultraviolet chromatic aberration, all of which have previously degraded the visualization of pyridine nucleotide fluorescence. Sharp autofluorescence images of the basal epithelium (40 μm within the cornea) show substantial subcellular detail, providing the ability to monitor autofluorescence intensity changes over time, which reflect changes in oxidative metabolism and cellular dynamics necessary for maintenance of the ocular surface. The autofluorescence was confirmed to be mostly of NAD(P)H origin by cyanide exposure, which increased the fluorescence from all cell types in the cornea by about a factor of two. Autofluorescence images of individual keratocytes in the stroma were observed only after cyanide treatment, while in the predominant extracellular collagen (> 90% of the stromal volume), fluorescence was not distinguished from the background. Observation of keratocyte metabolism demonstrates the sensitivity made available by two-photon microscopy for future redox fluorescence imaging of cellular metabolic states.  相似文献   

18.
The process of corneal endothelial wound healing was studied using laser and tandem scanning confocal microscopy (LSCM and TSCM). Following transcorneal freeze (TCF) injury, rabbit corneas were observed using ex vivo LSCM and in vivo TSCM. LSCM revealed the intracellular actin filament organization which, stained with phalloidin-FITC, in migrating endothelial cells, transformed fibroblast-like cells, stroma keratocytes, and epithelial cells during wound healing in corneal tissue. The TSCM provided sequential spatial observation of morphologic changes from endothelium to epithelium of the cornea during in vivo cellular repair of wound healing noninvasively on the same cornea without animal sacrifice. Ex vivo LSCM supported the morphologic analysis of the in vivo TSCM observations.  相似文献   

19.
The process of corneal endothelial wound healing was studied using laser and tandem scanning confocal microscopy (LSCM and TSCM). Following transcorneal freeze (TCF) injury, rabbit corneas were observed using ex vivo LSCM and in vivo TSCM. LSCM revealed the intracellular actin filament organization which, stained with phalloidin-FITC, in migrating endothelial cells, transformed fibroblast-like cells, stroma keratocytes, and epithelial cells during wound healing in corneal tissue. The TSCM provided sequential spatial observation of morphologic changes from endothelium to epithelium of the cornea during in vivo cellular repair of wound healing noninvasively on the same cornea without animal sacrifice. Ex vivo LSCM supported the morphologic analysis of the in vivo TSCM observations.  相似文献   

20.
The microfibrils served as the structural elements in polyacrylonitrile (PAN) fiber, which played an important role in the quality of the PAN precursor fibers. Their morphologies were examined by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and high‐resolution transmission electron microscope (HRTEM). The microfibrils existed in all of PAN fibers and arranged evenly in the cross‐sections. Furthermore, the pores existed between the microfibrils. The unoriented microfibrillar network was already formed in nascent fiber during coagulated process. Although the microfibrillar network was elongated and the microfibrils oriented along the fiber longitudinal direction during the spinning process, the interconnected microfibrillar network was still existed in the fiber transverse section. Furthermore, the transverse connection of the microfibrils was reinforced and the small microfibrils were tended to aggregate into the large fibrils. For mechanical performance of PAN fibers, their tensile strength increased to 708 MPa and the elongation at break decreased to 15.5%. PAN fibers exhibited ductile rupture during the mechanical test and the microfibrils served as reinforcing elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号