首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly oriented ZnO and Mg doped ZnO thin films were fabricated on Al2O3 substrate by sputtering at room temperature. The effect of Mg doping on the structural, optical, and morphological properties of ZnO film was investigated. The intensity of (002) peak in X‐ray diffraction measurements revealed the influence of Mg doping on the crystallinity and orientation of ZnO film. Photoluminescence (PL) results show that the Ultraviolet (UV) emission peak was shifted to lower wavelength side for Mg:ZnO film indicating the possibility for quantum confinement. UV–vis–NIR optical absorption revealed an improvement in optical transmittance from 70 to 85%, and corresponding optical band gap from 3.25 to 3.54 eV. Atomic force microscope (AFM) images revealed the nano‐size particulate microstructure of the films. The surface topography of Mg doped ZnO film confirmed decreased grain size with large surface roughness and increased surface area, favorable for sensing. Pure ZnO and Mg doped ZnO film were used as active layer and tested for its sensing performance to hydrogen. Compared to undoped ZnO, 22 at.% Mg doped ZnO film showed much higher sensor response to H2 at a concentration as low as 200 ppm and at a lower operating temperature of 180°C. A linear sensor response was observed for H2 concentration in the range of 100–500 ppm. Microsc. Res. Tech. 76:1118–1124, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Starch granules from rice and corn were isolated, and their molecular mechanism on interaction with α‐amylase was characterized through biochemical test, microscopic imaging, and spectroscopic measurements. The micro‐scale structure of starch granules were observed under an optical microscope and their average size was in the range 1–100 μm. The surface topological structures of starch with micro‐holes due to the effect of α‐ amylase were also visualized under scanning electron microscope. The crystallinity was confirmed by X‐ray diffraction patterns as well as second‐harmonic generation microscopy. The change in chemical bonds before and after hydrolysis of the starch granules by α‐ amylase was determined by Fourier transform infrared spectroscopy. Combination of microscopy and spectroscopy techniques relates structural and chemical features that explain starch enzymatic hydrolysis which will provide a valid basis for future studies in food science and insights into the energy transformation dynamics.  相似文献   

3.
Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X‐Ray diffraction (XRD) and Energy dispersive X‐ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal‐Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel‐dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Adamiak B  Mathieu C 《Scanning》2000,22(3):178-181
This paper presents experimental observations on electron scattering by gases (helium and air) in the specimen chamber of a variable pressure scanning electron microscope. It shows an important reduction of the beam scattering with the use of helium gas, and the consequences for the x-ray microanalysis are discussed.  相似文献   

5.
Observations made using AFM and SEM have been combined in order to study the structure of asphalts. Fluorescence microscopy was used to aid in understanding the structural changes occurring when polymer is added to the asphalts.   With the atomic force microscope we are able to study the structure of the asphalts without any pre-preparation. Despite very low resolution, our study reveal ed a network of asphaltene molecules with regard to asphalt gel. The same result is obtained by SEM observation but with a much better resolution. SEM observation, however, needs an adequate preparation method.   In the presence of polymer we observed a rearrangement of the initial asphaltene association which leads to the assumption that polymer can aggregate the asphaltene phase.  相似文献   

6.
In-situ heating experiments have been conducted at temperatures of approximately 1200 K utilising a new design of scanning electron microscope, the CamScan X500. The X500 has been designed to optimise the potential for electron backscatter diffraction (EBSD) analysis with concomitant in-situ heating experimentation. Features of the new design include an inclined field emission gun (FEG) column, which affords the EBSD geometrical requirement of a high (typically 160 degrees) angle between the incoming electron beam and specimen surface, but avoids complications in heating-stage design and operation by maintaining it in a horizontal orientation. Our studies have found that secondary electron and orientation contrast imaging has been possible for a variety of specimen materials up to a temperature of at least 900 degrees C, without significant degradation of imaging quality. Electron backscatter diffraction patterns have been acquired at temperatures of at least 900 degrees C and are of sufficient quality to allow automated data collection. Automated EBSD maps have been produced at temperatures between 200 degrees C and 700 degrees C in aluminium, brass, nickel, steel, quartz, and calcite, and even at temperatures >890 degrees C in pure titanium. The combination of scanning electron microscope imaging techniques and EBSD analysis with high-temperature in-situ experiments is a powerful tool for the observation of dynamic crystallographic and microstructural processes in metals, semiconductor materials, and ceramics.  相似文献   

7.
Green culms of Bambusa multiplex and the bamboo charcoal carbonized from the green culms at 700°C have been studied by means of X‐ray diffraction, X‐ray fluorescent element analysis, analytical scanning electron microscopy, and analytical scanning transmission electron microscopy (STEM), aiming at industrial applications as raw materials for functional devices and substances. It is revealed that the green culms and the charcoal contain a significant amount of Si, in particular, ~18 wt % in the skin. The green culms comprise amorphous and crystalline celluloses. The charcoal has a so‐called amorphous structure which is composed of randomly distributed carbon nanotubes and fibers. The growth of Ag‐doped activated charcoal powders that were produced by two different methods using this charcoal powder has also been studied.  相似文献   

8.
A comparative study of atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging of the healthy human liver parenchyma was carried out to determine the similarities and the differences. In this study, we compared the fine hepatic structures as observed by SEM and AFM. Although AFM revealed such typical hepatic structures as bile canaliculi and hepatocytes, it also showed the location of the nucleus and chromatin granules in rough relief structure, which was not visible by SEM. By contrast, SEM visualized other structures, such as microvilli, the central vein, and collagenous fibers, none of which was visualized by AFM. For better orientation and confirmation of most of the structures imaged by SEM and AFM, Congo Red-stained specimens were also examined. Amyloid deposits in the Disse's spaces were shown especially clearly in these images. The differences between the SEM and AFM images reflected the characteristics of the detection systems and methods used for sample preparation. Our results reveal that more detailed information on hepatic morphology is obtained by exploiting the advantages of both SEM and AFM.  相似文献   

9.
Piper solmsianum C.DC., which is popularly known as pariparoba, is a shrub that measures 1–3 m in height and it inhabits areas with wet tropical soils. The objective of this study was to analyze the leaf and stem anatomy using light microscopy, scanning electron micrographs, and energy‐dispersive X‐ray spectroscopy in order to provide information for species identification. The anatomical profile showed the following main microscopic markers: hypostomatic leaf; hypodermis layer on both sides; pearl glands; biconvex midrib shape; five collateral vascular bundles in open arc with the central bundle larger than the others; circular stem shape; collateral vascular bundles arranged in two rings; sinuous sclerenchymatic sheath in the pith; secretory idioblasts; and starch grains in the mesophyll, in the ground parenchyma of the midrib, petiole, and in the stem; and six morphotypes of calcium oxalate crystals (styloids, cuneiform, tabular crystal rosettes, cuneiform crystal rosettes, elongated square dipyramids, as well as very elongated square dipyramids).  相似文献   

10.
Gallium nitride (GaN) films were grown on sapphire and zinc oxide (ZnO) single crystal substrates using plasma‐assisted molecular beam epitaxy. As ZnO for GaN have a better lattice match, the coverage ratio of the GaN (002) plane on the ZnO substrate was significantly higher by about 45%. According to conducting atomic force microscopy and scanning surface potential microscopy measurements, the surface of GaN films grown on the ZnO substrate had two excellent physical characteristics: (a) an 18% reduction of the high contact current region, and (b) a highly uniform work function distribution. Therefore, for future applications in GaN‐based light‐emitting diodes, the use of ZnO as a substrate will prolong the luminescence lifetime and enhance the luminescent monochromaticity.  相似文献   

11.
We set out to study connected porosity of crystalline rock using X‐ray microtomography and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X‐ray microtomography and SEM‐EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X‐ray microtomography and SEM‐EDS. The samples were imaged with X‐ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X‐ray microtomography. CsCl inside the samples was successfully detected with X‐ray microtomography and it had completely penetrated all six samples. SEM‐EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X‐ray microtomography.  相似文献   

12.
M‐50 and carburized Pyrowear 675® (Carpenter Technology, Reading PA, USA) steel coupons deposited with commercially available physical vapour deposited TiN, TiCN, TiAlCN, TiCrCN/TiB4C multilayer, electroless Ni (E‐Ni) TiN and E‐Ni TiCN coatings were immersed in a branched perfluoropolyalkylether (PFPAE), Krytox AC® (E.I. du pont de Nemours and Company, Wilmington DE, USA), in an oxidative environment at temperatures ranging from 315 to 360 °C for a duration of 24 hours and compared with uncoated coupons. Coated and uncoated Pyrowear 675® coupons demonstrated superior corrosion resistance compared with coated and uncoated M‐50 respectively. The coatings most resistant to chemical attack in the PFPAE fluid were TiCN, E‐Ni TiN and E‐Ni TiCN. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
The poor integration with host cornea tissue and the low mechanical properties of pHEMA hydrogel for artificial cornea remains a difficult problem to solve. A modified pHEMA hydrogel, MMA copolymerized and type‐I collagen and bFGF immobilized, was previously prepared in an attempt to solve the problems. In this study, the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) and p (HEMA‐MMA) was studied by cell adhesion assay and atomic force microscopy (AFM). The results of cell adhesion assay show that the attachment of keratocytes on the modified membrane is much higher than that of the unmodified membrane. This indicates that the material after modification have better cell–material interaction. The AFM images reveal that the morphology of keratocytes cultured on different substrate is obviously different. The cell cultured on modified membrane presented a completely elongated and spindle‐shape morphology. The force?distance indicates that the biomechanical of keratocytes changes significantly after culturing on different substrates. The adhesion force (2328±523 pN) and Young's modulus (0.51±0.125 kPa) of the cell cultured on modified membrane are much higher, and the stiffness (0.08±0.022 mN/m) is lower than those of the cell cultured on unmodified membrane. These results show that the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) for keratocytes is much improved. SCANNING 31: 246–252, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
17.
Microenergy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and scanning electron microscopy (SEM) were used to test the hypothesis that zirconia modified glass ionomer cement (GIC) could improve resistance to erosion‐abrasion to a greater extent than conventional cement. Bovine enamel (n = 40) and dentin (n = 40) samples were prepared with cavities, filled with one of the two restorative materials (GIC: glass‐ionomer cement or ZrGIC: zirconia‐modified GIC). Furthermore, the samples were treated with abrasion‐saliva (AS) or abrasion‐erosion cycles (AE). Erosive cycles (immersion in orange juice, three times/day for a duration of 1 min over a 5 day period) and/or abrasive challenges (electric toothbrush, three times/day for a duration of 1 min over a 5 day period) were performed. Positive mineral variation (MV%) on the enamel after erosion‐abrasion was observed for both materials (p < 0.05), whereas a negative MV% on the dentin was observed for both materials and treatments (p < 0.05). The SEM images showed clear enamel loss after erosion‐abrasion treatment and material degradation was greater in GIC_AE compared to those of the other groups. Toothbrush abrasion showed a synergistic effect with erosion on substance loss of bovine enamel, dentin, GIC, and ZrGIC restorations. Zirconia addition to the GIC powder improved the resistance to abrasive‐erosive processes. The ZrGIC materials may find application as a restorative material due to improved resistance as well as in temporary restorations and fissure sealants.  相似文献   

18.
To better understand the basis of urinary calculi formation, we studied the composition, microstructure, and element analysis of different types of urinary calculi. Sixty people with urinary stones in Shanxi province were selected randomly. The composition of urinary stones was analyzed using Fourier transform infrared spectroscopy. The microstructure of material components was observed by a scanning electron microscopy and the elemental distribution and composition were analyzed by an X‐ray energy spectrometer. Furthermore, general information, BMI, history of medicine, chronic medical history, family history, and recurrence rates were collected. Female‐to‐male ratio was 1:2.5; median age was 43.2 years old. Of the patients, 13.3% were found definite family history and 46.6% of patients for recurrence history. It was found that mixed stones account for the largest proportion (65%), followed by calcium oxalate monohydrate calculi (26.67%). In mixed stones, the mixture of calcium oxalate monohydrate and hydroxyapatite had the largest proportion, accounting for 71.79%. Stones showed different microcosmic characteristics and element distribution. Stones varied widely in distribution, infrared spectrum, microstructure, and element composition, which provided an important basis for urinary calculi research regarding urinary stone formation.  相似文献   

19.
Camphorsulfonic acid doped polyaniline (PANI-CSA) prepared by chemical oxidative polymerization is spin coated on glass plates with four different PANI:CSA weight ratios (1:1, 1:2, 1:4 and 1:8) and measurements on the structural and optical properties are done. Thickness of the films measured <100 nm are termed as nanofilms. Fourier transform infrared spectroscopy indicated the presence of dopant and an increase in degree of polymerization with increase in dopant ratio. X-ray diffraction studies revealed the change of amorphous nature of the film to crystalline nature with increase in CSA dopant ratio. Scanning electron microscopy showed the change of very smooth morphology of the film to rough root-like morphology with increase in CSA dopant ratio. Hall-effect analysis showed that the increase in CSA weight ratio appreciably increases the conductivity of PANI-CSA films due to increase in carrier concentration and it also represents the semiconductivity (P-type) nature in all the films. UV–visible absorption studies reveal the broadening of absorption spectrum in visible region with maximum CSA dopant ratio (1:8). Photoluminescence spectra of PANI-CSA films excited using 300 nm, revealed that the change in intensity and position of emission peaks are due to transition of semiconducting nature of the film to conducting nature with an increase in CSA dopant ratio from 1:1 to 1:8.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号