首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
交直流输电系统面临的突出问题之一是故障后与交流系统相适应的直流控制问题。以改善交流系统故障后的频率和电压恢复特性为目的,提出了直流功率的能量面积补偿方法。该方法能基于换流站本地数据准确计算出在线调整系统减速面积的直流功率补偿量和持续时间,在整流侧交流系统严重故障后抑制振荡过程,加速系统恢复;对于逆变侧交流故障,能改善系统频率和电压的恢复特性,避免连续换相失败的发生。建立交直流混联系统电磁暂态仿真模型进行仿真验证,仿真结果验证了所提出控制方法的可行性和有效性。  相似文献   

2.
对于特高压交直流混联电网,当直流系统逆变侧发生换相失败后,交流系统有可能出现暂态功率倒向现象并导致交流线路保护发生误动。为此,对交流系统暂态功率倒向现象及其产生机理进行了研究;并利用PSCAD/EMTDC仿真软件建立了特高压交直流混联线路的仿真模型,分析了故障点过渡电阻的大小对暂态功率倒向现象的影响。仿真结果表明:随着过渡电阻的增大,倒向功率先减小后增大。通过减少突变量正方向元件的动作区域或者设置一定的延迟时间(一般取40 ms)闭锁纵联保护,可以防止由暂态功率倒向引起的线路保护误动。  相似文献   

3.
交直流混联电网突变量选相元件动作性能分析   总被引:1,自引:0,他引:1  
交直流混联电网受端交流系统发生故障时,其背侧系统正、负序等值阻抗不再近似相等,从而对现有继电保护产生不利影响。文中分析了交直流混联电网受端输电线路相电流差突变量选相元件的动作性能,指出现有相电流差突变量选相元件应用于交直流混联电网时,在单相接地故障情况下由于逆变侧系统正、负序阻抗相差较大,从而引起各侧正、负序电流分配系...  相似文献   

4.
为提升直接法分析交直流混联电力系统暂态稳定的准确性,提出了一种考虑系统近似轨迹的交直流混联电力系统暂态能量计算方法。通过对交直流混联电力系统等值模型仿真得到系统近似故障响应轨迹,根据系统轨迹上直流端口电压、相角以及直流电流的取值确定直流端口传输功率,进而沿系统轨迹对直流端口功率进行积分,计算直流系统势能,提升了交直流混联电力系统暂态能量计算结果的准确性。分别运用所提方法和不计系统响应轨迹的能量函数计算方法对交直流混联电力系统测试算例进行分析,并与PSD-BPA时域仿真结果对比,验证了所提方法的优越性。  相似文献   

5.
交直流混联系统中由于直流接入所带来频率偏移的问题,会导致交流输电线路工频量距离保护存在不稳定动作的风险。本文提出基于时域的交直流混联系统抗过渡电阻距离保护方案。首先对时域距离保护在交直流混联系统中的适应性进行深入分析,利用时域全量进行距离保护计算,从原理上弥补了工频量距离保护在交直流混联系统中不稳定动作的问题。然后讨论了接地故障过渡电阻大小对故障电流的影响,对时域方程添加过渡电阻待识别量,有较好的抗过渡电阻能力。仿真结果表明,基于时域的抗过渡电阻距离保护能有效地解决交直流混联系统保护动作不稳定的情况,且有效避免了距离保护Ⅰ段发生经过渡电阻单相接地时保护动作不稳定的问题。  相似文献   

6.
针对交直流混联系统发生故障时出现无功不足和电压跌落的问题,需要在交直流混联系统交流侧加装同步调相机,对其提供强无功支撑,保证系统稳定运行.对含同步调相机的交直流混联系统稳定性进行了研究,将在不同故障下的交直流混联系统逆变侧接入同步调相机前后逆变侧母线电压情况进行对比,研究同步调相机接入对母线电压的补偿效果.建立了含同步调相机的交直流混联系统数值仿真模型,仿真结果表明加装同步调相机可提高交直流混联系统的稳定性,提升系统故障恢复能力.  相似文献   

7.
针对交直流混联系统动态稳定性,以4机11节点为例,在电力系统分析综合程序中对交直流互联系统进行小干扰稳定分析。首先对交直流互联系统进行建模,并且基于直流系统控制方式采用整流侧定电流,逆变侧定电压的方式对系统进行线性化,以特征值分析方法研究了由于直流的加入对系统振荡模式的影响,探究了直流系统运行过程中的相关参数对互联系统振荡模式影响。仿真分析结果表明:合适的无功补偿及提高交直流混联系统直流输送的功率比例,将有利于系统的小干扰稳定。  相似文献   

8.
含柔性直流电网的交直流混联系统中换流站功率参考值和下垂系数分别决定了换流站功率分配以及直流电压与直流功率间的斜率控制关系,进而决定了整个交直流混联系统的潮流分布,因此功率参考值和下垂系数的选取至关重要。为此,提出一种含柔性直流电网的交直流混联系统潮流优化控制策略,对功率参考值和下垂系数进行优化,以实现系统网络损耗和直流电压偏差率综合最小的目标。首先,针对含柔性直流电网的交直流混联系统建立了换流站模型、交流系统模型和直流电网模型,并建立了直流电网在主从运行方式或下垂运行方式下的控制方程统一表达式。然后,基于含柔性直流电网的交直流混联系统最优潮流,在线自适应修正换流站功率参考值和下垂系数。最后,对不同运行方式下含五端柔性直流电网的修正IEEE 39和IEEE 118节点交直流混联系统进行计算分析,其结果验证了所述方法的有效性。  相似文献   

9.
交直流混联受端电网中大容量特高压直流(UHVDC)输电线路发生直流闭锁故障后,电网会产生巨大功率缺额,引起潮流大幅度转移和频率跌落,可能会造成交流通道过载,引发连锁故障。针对这一问题提出了一种交直流混联受端电网最优切负荷方案计算方法。该方法基于广域测量技术,利用直流闭锁后瞬间量测数据,建立闭锁后稳态时交流通道传输功率和电网频率的估算模型,考虑交流通道传输功率极限、电网频率安全约束及可切负荷的重要性差异,以负荷综合损失最小为目标,建立最优切负荷方案的优化模型。通过改进的粒子群优化(PSO)算法求解得到电网最优切负荷点及其对应的最优切负荷量,保证了直流通道闭锁之后,交直流混联受端电网的安全稳定运行。最后在机电暂态软件PSS/E中以IEEE 39节点改进系统为例,通过仿真分析对所提方法进行对比验证,证明了该方法的正确性和有效性。  相似文献   

10.
为了解决多子微电网型交直流混合配电系统功率分配以及交流子微电网母线电压偏差大的问题,提出一种灵活功率控制与电压抑制策略.首先分别推导了单个交流子微电网频率、直流子微电网电压与公共直流母线电压的关系,然后分析多个交直流子微电网之间的频率与电压关系,并利用此关系对交直流子微电网中储能单元的下垂控制进行改进,实现整个系统的功率互助及分配.另外,对双向AC/DC变换器电流内环控制进行改进,利用扩张状态观测器对扰动电流进行跟踪,并将跟踪得到的扰动电流引入双向AC/DC变换器电流内环中进行补偿消除,以抑制交流子微电网的电压波动.最后,在MATLAB/Simulink仿真平台中建立多子微电网型交直流混合配电系统模型,仿真结果表明所提控制方法可以实现交直流混合配电系统中子微电网间的功率互助,较好地维持交流子微电网母线电压和频率、直流子微电网电压与公共直流母线电压的稳定.  相似文献   

11.
送端采用电网换相换流器(LCC)、受端采用全半桥子模块混合型模块化多电平变流器(FHMMC)的LCC-FHMMC混合直流输电系统,当受端交流系统发生故障时,受端交流电压跌落,受端功率传输受阻,盈余的功率导致子模块电容过电压,甚至可能造成设备的严重损坏。为此,提出了一种基于FHMMC直流电压降压运行的受端交流系统故障穿越控制策略,使其直流电压始终低于逆变侧交流母线的电压有效值。同时,整流侧LCC保持常规的定直流电流控制,保证逆变侧的直流电流在额定值附近运行,从而实现了进入直流系统的有功功率与逆变器向受端交流系统输出的有功功率之间的平衡。最后在PSCAD/EMTDC仿真平台上对LCC-FHMMC混合直流输电系统受端交流系统发生的对称故障和不对称故障分别进行了仿真分析,仿真结果验证了所提控制策略能够快速有效地穿越受端交流系统故障,并抑制子模块电容过电压。  相似文献   

12.
风电经混合型MMC外送的暂态能量转移机理与限流耗散策略   总被引:1,自引:0,他引:1  
混合型模块化多电平换流器(MMC)具有交直流解耦控制、抑制故障电流、维持并网电压等独特优势,在基于模块化多电平换流器的风电并网系统中具有广阔的应用前景。已有基于混合型MMC的交直流故障穿越策略大多仅考虑直流电网本体,并未结合风电并网考虑暂态能量转移与耗散的问题。首先,研究了基于混合型MMC的风电并网系统在交直流故障期间的暂态发展过程,归纳出能量转移机理,分析了不同故障阶段的关键因素。然后,提出了一种具备故障识别能力的自动限流耗散方法,研究了加入限流耗散措施后的暂态能量转移变化。最后,在四端风电直流电网下验证了自动限流控制及耗散方法的有效性。  相似文献   

13.
研究了送端为相控型换流器(line commutated converter,LCC)、受端为2个并联的模块化多电平换流器(modular multilevel converter,MMC)组成的三端混合直流输电系统的交直流故障特性及其控制保护策略。在分析现有故障穿越控制策略的基础上,针对交流侧故障提出整流站LCC最小触发角控制、逆变站MMC最大调制比控制与直流电压偏差控制的协调策略;针对直流线路故障,通过在直流线路两端配置限流电抗器构造边界条件,提取直流线路故障电流暂态突变量以识别故障位置,并采用直流断路器开断故障的方法,可以快速隔离直流线路故障并缩小故障影响范围。最后,在PSCAD/EMTDC中建立混合直流输电系统模型,仿真验证了所提策略的可行性。结果表明,所提控制策略在所联接电网交流故障情况下可相应提高直流系统的输送功率,降低功率输送中断发生的概率;直流线路故障时基于直流断路器的直流电流突变率保护策略能够快速隔离故障,提高供电可靠性。  相似文献   

14.
逆变站作为交直流混合电网的核心枢纽,其故障特性相较于传统同步机更加复杂。逆变站交流出线发生故障时,受逆变站故障特性影响,传统基于工频量的保护无法正确动作。通过分析逆变站交流出线两端系统故障特性差异,基于R-L模型时域微分方程算法,提出了一种新型方向元件。当逆变站交流出线发生短路故障时,直流系统侧提供的故障电流和受端交流系统提供的故障电流特性差异极大,通过计算测量电压降落和计算电压降落变化趋势的相关系数,所提方向元件可正确判断故障方向。分析表明,所提出的方向元件适用于逆变站交流出线线路保护,且在逆变站仅有一条出线的情况下仍能正确动作。仿真结果表明,该方向元件具有良好的保护性能,不受雷击、故障类型、逆变站换相失败等因素的影响。  相似文献   

15.
VSC-HVDC输电系统模式切换控制策略   总被引:2,自引:0,他引:2  
分析了基于电压源换流器的高压直流(VSC-HVDC)输电系统在定直流电压控制端交流电网故障下的模式切换控制策略,提出了基于滞环和本地直流电压检测的模式切换控制,并给出了该控制的实现方法。推导了正常运行时VSC-HVDC输电系统直流功率与两侧换流器直流电压的关系式,给出了定有功功率控制端的直流电压正常工作范围的计算方法,提出了模式切换控制策略中直流电压阈值和故障穿越期间直流电压参考值的确定方法。最后,PSCAD/EMTDC仿真验证了在不同故障类型和不同运行方式下VSC-HVDC输电系统模式切换控制策略的有效性;仿真结果表明,该直流电压阈值和参考值的确定方法能够为模式切换控制策略的指令值整定与配合提供可靠参考。  相似文献   

16.
随着高压直流输电技术的日益发展,交直流混联系统的相互影响已成为高压直流输电领域的研究重点。针对含高压直流输电系统接入的交流系统,本文研究了其在不对称故障下的故障分析方法,提出了LCC-HVDC在交流侧的复合序网等值模型以及短路电流计算方法。首先搭建了基于不对称工况下的LCC-HVDC开关函数模型,随后根据开关函数模型建立了相应的LCC相量模型,并推导了LCC交流侧复合序网的计算方法。最后将LCC复合序网模型与交流系统不对称故障的边界条件结合,提出了适用于求解含高压直流输电系统接入的交流系统不对称故障短路电压电流的迭代算法并进行了仿真验证。仿真结果表明,本文提出的故障电流算法均可以满足工程计算要求。  相似文献   

17.
受直流系统接入的影响,交流侧出现频率偏移的故障特征以及叠加原理适应性差的问题,这都会导致基于工频故障分量的传统纵联保护存在误动或拒动的可能。在参数识别思想的基础上,对混联系统交流送出线的线路故障进行分析,提出基于阻感模型符合度的判别方法。若故障相符合阻感模型则判定为区内故障,不符合则为区外故障,并给出保护判据。该保护采用时域全量,解决了叠加原理不适用的问题,克服了频率偏移对保护带来的影响。仿真结果显示,该保护方案能够准确快速地识别故障,表明基于时域全量阻感模型相似度判别的保护方案适用于交直流混联系统。  相似文献   

18.
含电压源换流器的多端直流系统在工作原理及控制方式上与常规直流系统存在本质区别,现有静态安全分析无法直接对含多端柔性直流的交直流系统分析计算。文中以传统交流电网静态安全分析为基础,首先,提出了多端柔性直流混联系统的交直流静态安全分析计算框架,阐述了功能实现方法及采用的关键技术。然后,在预想故障计算中考虑了交直流电网运行条件变化情况,保证计算结果与实际电网运行状态一致,提高了静态安全分析计算的准确性。最后,通过构建含四端柔性直流的交直流混联系统仿真模型,验证了算法的有效性和实用性。  相似文献   

19.
受端混联型多端直流输电系统具有很好的工程应用前景,但受端不同换流站在交流故障时的耦合特性复杂,其控制策略应能适应各站交流故障穿越的需求。首先研究了受端混联系统逆变侧并联模块化多电平换流器(modular multilevel converter, MMC)侧交流故障时的电流不平衡、过压过流机理,以及电网换相换流器(line commutated converter, LCC)侧交流故障时的功率返送机理。然后,基于故障特性提出了一种简单的协调控制策略,即通过在MMC从站配置基于有功不平衡量的电压补偿来实现并联站间电流平衡,通过设计合适的LCC定电流整定控制来解决严重过压问题。最后基于白鹤滩—江苏多端直流输电工程实际参数的电磁暂态仿真结果,验证了对故障机理分析的正确性和所提控制策略的有效性。协调控制策略不仅能有效解决MMC功率和电流不平衡问题、减小过压过流和避免功率返送,还能改善系统恢复性能,提升系统安全稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号