首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

2.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

3.
低共熔混合锂盐合成Co和Al共掺杂的LiNiO2   总被引:2,自引:0,他引:2  
在空气中,采用低共熔混合物L iNO3-L iOH为锂盐,制备了Co和A l共掺杂锂离子电池正极材料L iN i0.8Co0.15A l0.05O2。XRD分析表明,制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的放电电流密度和2.7—4.2 V的电压范围内,L iN i0.8Co0.15A l0.05O2首次放电比容量达147.6 mA.h/g,库仑效率达84.3%,第20次的放电比容量为133.8 mA.h/g。该合成新工艺,能制备出电化学性能良好的Co和A l共掺杂的L iN iO2正极材料。  相似文献   

4.
采用电泳沉积法在镍片上沉积Co3O4/碳纳米管(CNT)复合膜。利用XRD、SEM和TEM对Co3O4/CNT复合膜进行物性分析,利用循环伏安和恒流充放电测试表征电容性能。研究表明在CNT表面成功包覆了一层Co3O4壳层,形成独特的核/鞘纳米电缆结构。电化学测试表明,Co3O4/CNT复合膜电极具有较好的电容性能,在充放电电流密度为0.5 mA/cm^2时,比电容高达282 F/g;增加电流密度到15 mA/cm2时,比电容为209 F/g,并具有优异的循环稳定性。  相似文献   

5.
采用硬模板法原位负载(insitu)和后浸渍(post)法制备了介孔Ag/Co3O4和不负载的介孔Co3O4催化剂,考察了它们对甲醛的催化氧化活性,其中后浸渍法负载的催化剂(Ag/Co3O4-post)展示了最优的活性。对各催化剂样品的表征发现,Ag/Co3O4-post在负载Ag的制备过程中介孔结构塌陷,但同时其还原能力增强,并且暴露出最多的表面Co3+和缺陷氧,进而使其具有最强的催化氧化甲醛的活性。  相似文献   

6.
张卫新  翁韶迎  张俊  杨则恒  王强 《硅酸盐学报》2012,40(10):1495-1501
自制直径为90nm、长为500nm的β-FeOOH纳米棒为前驱物,通过碳热还原法和热分解法分别制备出形貌均匀、粒径为300nm的LiFePO4/C正极材料和粒径为100nm的Fe2O3负极材料,并研究它们对金属锂组成半电池和构造LiFePO4/C vs.Fe2O3全电池的电化学性能。结果表明:LiFePO4/C半电池在0.1C、0.5C、1.0C、5.0C、10.0C和15.0C(1C=170 mA g–1)倍率下放电比容量分别为158.8、153.2、144.3、126.8、111.0 mA h g–1和92.9mA h g–1。经过不同倍率循环后,返回0.1 C放电比容量为157.5mA h g–1,为初始0.1 C放电比容量的99.2%。Fe2O3半电池在50mA g–1电流密度下首次放电比容量为1655.5mA h g–1,循环50次后,仍保持460mA h g–1的放电比容量。LiFePO4/C vs.Fe2O3全电池在0.1 C倍率下,相对于LiFePO4活性物质,首次放电比容量为148.7mA h g–1;相对于Fe2O3活性物质,首次放电比容量为441.7mA h g–1。由LiFePO4/C纳米粒子作为正极材料、Fe2O3纳米粒子作为负极材料组成的全电池在0.1 C到2.0 C不同倍率下均表现出了良好的循环性能,且返回0.1 C后其放电比容量相对于初始0.1 C放电比容量无衰减。可见,以β-FeOOH纳米棒为前驱物控制制备的LiFePO4/C正极纳米材料和Fe2O3负极纳米材料可以有效地提升电池的性能。  相似文献   

7.
采用固相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等)。以LiOH.H2O,H2C2O4.2H2O,Ni(AC)2.4H2O,Co(AC)2.4H2O和Mn(AC)2.4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整。电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA.h/g,容量保持率为94%;50次循环后为157.2 mA.h/g,容量保持率为90.8%。  相似文献   

8.
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系的步冷曲线和t-x相图,该体系的最低共熔点为175.7℃。利用低共熔混合物LiNO3-LiOH为锂盐,与高密度前驱体Ni0.8Co0.2(OH)2混合经2个恒温阶段烧结(600℃恒温6 h、800℃恒温24 h)制备出了振实密度高达3.23 g/cm3的锂离子电池正极材料LiNi0.8Co0.2O2。X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构。电性能测试表明:在0.5 mA/cm2放电电流密度和3.0—4.3 V的电压范围内,LiNi0.8Co0.2O2首次放电比容量达175(mA.h)/g,放电比容量为163(mA.h)/g,库仑效率为93%。实验结果表明采用该工艺能够制备出电化学性能良好的锂离子正极材料。  相似文献   

9.
采用尿素燃烧法制备La0.6Sr0.4Co0.2Fe0.8O3-δ(记作LSCF,下同)钙钛矿型阴极催化剂前体粉末,经800℃锻烧后具有典型的钙钛矿结构。在400~950℃温度范围内,催化剂具有较高的电导率,满足固体氧化物燃料电池阴极的要求。研究了以H2S为燃料气时,单体固体氧化物燃料电池(CoS-Mo2S)/BaCe0.9-xZrxY0.1O3/LSCF在不同温度下的电化学性能以及脱硫性能。结果表明:电池的最大电流密度、最大功率密度以及对H2S的脱除率均随温度的升高而增大;在反应温度为850℃,燃气流量为50 mL/min的条件下,电池的最大电流密度和最大功率密度分别为39.52 mA/cm2,6.38 mW/cm2;900℃时,H2S的脱除率达72%。  相似文献   

10.
以Zn(Ac)2×4H2O和FeCl3×6H2O为主要原料,采用一步水热法合成了中空结构的ZnFe2O4微球,对其物相、形貌和组成进行了分析. 结果表明,中空ZnFe2O4粒径微球约300 nm,壳厚约25 nm. 以其为锂离子电池负极材料,100 mA/g电流密度下,首次放电容量为1524 mA×h/g, 50次充放电循环后容量约为826 mA×h/g,呈现出优异的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号