首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
六氟磷酸锂生产工艺研究   总被引:8,自引:1,他引:8  
综述了六氟磷酸锂的生产方法,并且讨论了它的优缺点。分析了杂质对六氟磷酸锂性能的影响,论述了氟化氢溶剂法生产过程中,影响六氟磷酸锂产品质量的主要因素,并提出了可能的解决办法。最后讨论了六氟磷酸锂生产过程存在的一些问题。  相似文献   

2.
锂离子电池电解质现状与发展   总被引:12,自引:1,他引:12  
黄峰  周运鸿 《电池》2001,31(6):290-293
电解质是制备高功率密度和高能量密度、长循环寿命和安全性能良好的锂离子电池的关键材料之一。简要介绍了锂离子电池电解质的分类和性能指标 ;详细介绍了有机电解质、各类聚合物电解质和无机固体电解质的研究进展 ;并分别讨论了它们的优缺点。  相似文献   

3.
介绍了锂离子电池的工作原理,分析了用固态电解质取代液态电解质的优点,探讨了锂电池固态电解质的发展及全固态锂电池的开发动向。  相似文献   

4.
六氟磷酸锂是现有锂离子电池电解质中综合性能最好的一种电解质盐。介绍了国内外六氟磷酸锂主要制备工艺,并对这些工艺路线的优缺点进行了分析。综述了近年来传统HF法制备六氟磷酸锂生产技术的改进情况和新工艺的研究进展,最后对六氟磷酸锂今后的制备工艺的改进和创新进行了展望。  相似文献   

5.
姜晓萍  左翔  蔡烽  杨晖 《电源技术》2012,36(4):467-469
六氟磷酸锂(LiPF6)是一种常用的锂离子电池电解质材料,其动力学研究对锂离子电池的失控模拟及安全性能预测有重要意义。为了研究LiPF6在不同条件下的热分解动力学,采用热重分析法(TGA)和傅里叶变换红外光谱法(FTIR)在线联用对LiPF6的热性质和气体逸出情况进行系统的研究和表征,同时找出LiPF6分解动力学特征。研究结果表明,LiPF6的热分解反应遵循二维相界移动模型,热分解活化能为98 kJ/mol。  相似文献   

6.
黎晓龙 《电器评介》2014,(14):117-118
锂离子电池管理系统行业处于锂离子电池产业链的中游,其发展前景与锂离子电池行业发展前景密切相关。作为新能源市场的重要组成部分,锂离子电池产业受到了世界各国政府的高度重视和大力支持。近年来锂离子电池产业发展迅速,锂离子电池广泛应用于手机、笔记本电脑、电动自行车、电动工具、通讯基站及移动照明等领域。受经济发展、技术进步和环保意识提高的影响,目前我国锂离子电池产业呈现良好的增长态势,极大的带动了锂离子电池管理系统市场的增长。  相似文献   

7.
全球能源转型正在积极推进,随着可再生能源发电规模的不断增大,电力系统输送消纳可再生能源压力迅速加剧。储能技术的"能量时空转移功能"可以有效调节电力系统的供需平衡,支撑源网荷侧深度变革。电池储能技术配置灵活,综合特性优异,可在电力系统电源侧、电网侧、用户侧承担不同的角色,发挥不同作用。以电池储能技术为切入点,为更好地理解电池储能技术,重点从技术水平、市场应用、问题与挑战及未来发展趋势等方面对电池储能技术进行了剖析。  相似文献   

8.
刘伟  仇卫华  王赛  盛喜忧 《电池》2007,37(1):67-69
对应用于锂离子电池电解质的离子液体按照阳离子的类型进行分类,并介绍了它们的性质.综述了近年来离子液体作为电解质的应用方式,包括单一的离子液体、离子液体与传统有机电解质混合、离子液体聚合物和离子液体中引入功能基团.讨论了阴、阳离子结构对离子液体性质的影响,离子液体与电极的匹配性.  相似文献   

9.
介绍了锂离子电池用阻燃添加剂对电解液的阻燃机理;综述了有机磷、有机氟化合物阻燃剂及复合阻燃剂的性能、特点及研究进展情况;介绍了阻燃剂重要性能的测试方法;提出了锂离子电池阻燃剂研究开发的方向。  相似文献   

10.
锂离子电池     
本文比较了液体电解质锂离子电池和固体可充性锂电池的性能和技术难点,提醒有关方面开发全塑固体锂离子电池。  相似文献   

11.
使用LiClO4电解液、LiPF6电解液及两者的混合电解液装配圆柱形Li/MnO2电池,分析LiPF6对电池性能的影响.引入LiPF6后,虽然开路电压上升,放电容量下降;但过放电时的峰值温度最高下降137℃,有利于提高电池的安全性能.  相似文献   

12.
研究了LiPF6、双草酸硼酸锂(LiBOB)及它们的混合物在乙烯碳酸酯(EC) 碳酸甲乙酯(EMC) 碳酸二甲酯(DMC)(体积比1:1:1)中的电化学性能.LiPF6-LiBOB电解液与LiPF6电解液相比,提高了金属锂的循环效率,电池的平均电压、大电流放电能力及高温性能;与LiBOB电解液相比,提高了溶液的电导率、电池的室温放电比容量及低温性能.  相似文献   

13.
李世友  李法强  马培华  邓小川 《电池》2007,37(6):415-417
通过TG-DTG曲线,研究了LiPF6与双草酸硼酸锂(LiBOB)的热分解过程.它们的热分解过程均包括2个反应.通过Achar-Brindly-Sharp微分法以及Coats-Redfern积分法相结合的方法,对非等温热力学数据进行分析,得到了分解反应的非等温动力学方程式和动力学参数.  相似文献   

14.
氢镍电池的现状与发展方向   总被引:16,自引:1,他引:16  
余成洲  赖为华 《电池》2001,31(2):58-61
分别对小型MH/Ni电池、电动车和电动工具用MH /Ni动力电池的发展现状、开发动向及发展趋势进行了概述 ,小型MH/Ni电池将朝着低成本化、高容量化、轻型化、新品种化等方向发展 ,MH/Ni动力电池主要朝高比能型和高功率型两大方向发展。强调了发展MH/Ni电池产业的重大意义并列出了氢镍电池领域的主要技术发展趋势  相似文献   

15.
郑洪河  徐仲榆 《电池》2004,34(1):4-6
使用尖晶石LiMn2O4作为锂离子电池正极材料,采用恒电流充放电和粉末微电极的循环伏安方法对比研究了LiPF6的光化学不稳定性及其对电解液性能的影响.结果表明:在光催化作用下,LiPF6分解产生的杂质在较低的电位条件下参与电极反应,诱发电解液组分的氧化分解,是破坏电解液性能的重要原因.在此基础上选择使用了一种能够吸附电解液中质子酸的沸石预处理剂,证实了在LiPF6电解液中质子酸含量的升高是影响电解液性能的重要因素.  相似文献   

16.
锂具有比能量高,比体积小等优点,经过不断的改善与发展,具有寿命长,安全性高,容量大,成本较低等特点的锂电池已经成为当今的主流储能设备。主要介绍了锂电池的起源和发展历程,重点通过对比锂电池的正极,负极,电解质等部分材料组成,分析了锂电池工作性能随着电池材料的变化而产生的差异,讨论了电池材料与锂电池各项技术指标间的关系;并总结了目前锂电池技术存在的问题和不足;此外,还对锂电池的发展前景进行了展望。  相似文献   

17.
磷酸铁锂电池因其较长的使用寿命和环保性,被广泛应用于储能系统。然而,近年来,储能电站安全事故频发,给电网稳定运行造成了威胁。在热失控过程中,磷酸铁锂电池会产生C2H2和C2H6等可燃气体,是造成燃烧、爆炸等灾害的重要原因。因此,实时准确监测储能预制舱内C2H2和C2H6等可燃气体的浓度是保障其安全稳定运行的关键。文中提出一种基于开放光路光纤环形腔衰荡光谱(fiber loop ring-down spectroscopy,FLRDS)技术的气体检测方法,可实现自由空间内微量气体在线监测。对梯度折射率(gradient index,GRIN)透镜的空间光耦合光学损耗进行理论和实验分析,建立插入损耗为0.95 dB的开放光路FLRDS气体检测系统。根据C2H2和C2H6红外光谱特性,开展激光光源性能测试。模拟开放空间气体环境研究了C2H2和C2H6的气体浓度检测方法,结果表明,该系统具有较好的稳定性,N2背景下测量信号标准偏差S仅为平均值的0.156%。衰荡时间与气体浓度之间存在良好的线性关系,C2H2线性拟合度R2为0.998 32,C2H6线性拟合度R2为0.994 72。反演计算结果表明,C2H2和C2H6的最大相对误差分别为3.215%和4.72%,最大绝对误差分别为16.86 μL/L和12.74 μL/L,测量精度良好。  相似文献   

18.
李福桥  朱泽华 《电源技术》2016,(5):1142-1144
以金属锂为负极,硫为正极的锂硫二次电池的能量密度高达2 600 Wh/kg,仅次于锂-空气二次电池,成为电动汽车及电站储能电池的研究热点。由于液态电解质溶解大量的放电产物聚硫化锂等因素,导致锂硫电池的容量衰减快、循环寿命短及自放电率大,这也是目前锂硫电池难以商业化的主要问题。围绕硫多孔碳复合材料、电解液添加剂及离子交换隔膜等,综述国内外最新研究进展,以期得到研究思路。  相似文献   

19.
采用AlPO4对LiCoO2进行了表面原位包覆,并通过扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、X射线衍射光谱法(XRD)及电化学性能测试等分析手段比较了未包覆和包覆后材料的性能.结果表明AlPO4包覆层均匀,厚度为20 nm左右;包覆后LiCoO2的循环性能得到显著改善.  相似文献   

20.
刘旭  杨续来 《电源技术》2016,(1):218-220
按照锂离子电池对电解液的要求,即较高的离子电导率、良好的热稳定性、较低的化学活性和优良的环境适应性,总结了锂离子电池电解液中无机锂盐和有机锂盐的研究进展,对未来的锂盐发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号