首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) make use of two pure rotational Raman (MR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significant smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signal are needed the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s -statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is < 1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible.  相似文献   

2.
Bösenberg J 《Applied optics》1998,37(18):3845-3860
A comprehensive formulation of the differential absorption lidar (DIAL) methodology is presented that explicitly includes details of the spectral distributions of both the transmitted and the backscattered light. The method is important for high-accuracy water-vapor retrievals and in particular for temperature measurements. Probability estimates of the error that is due to Doppler-broadened Rayleigh scattering based on an extended experimental data set are presented, as is an analytical treatment of errors that are due to averaging in the nonlinear retrieval scheme. System performance requirements are derived that show that water-vapor retrievals with an accuracy of better than 5% and temperature retrievals with an accuracy of better than 1 K in the entire troposphere are feasible if the error that results from Rayleigh-Doppler correction can be avoided. A modification of the DIAL technique, high-spectral-resolution DIAL avoids errors that are due to Doppler-broadened Rayleigh backscatter and permits simultaneous water-vapor and wind measurements with the same system.  相似文献   

3.
A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is far less sensitive to experimental errors and does not require calibration of the measurement, as is the case of the two-signal lidar technique conventionally used for the observation of depolarization ratios. The three-signal method is applied to a polar stratospheric cloud observation. In the analysis we show that, depending on the statistical error of the measurement and on the lidar system parameters, the new method requires minimum cloud volume depolarization ratios to be applicable; in the case study presented, this threshold is approximately 0.2. Depolarization ratios determined with the three-signal method can be used to accurately calibrate measurements with the conventional two-signal technique.  相似文献   

4.
The optical systems for the transmitter and receiver of a high-power lidar for stratospheric measurements have been designed and analyzed. The system requirements and design results are presented and explained. An important and driving factor of this design was the requirement for a small image diameter in the plane of an optical chopper to allow the high-intensity lidar returns from the lower atmosphere to be shielded from the detection system. Some results relevant to the optical performance of the system are presented. The resulting system has been constructed and is now in operation at the Mauna Loa Observatory, Hawaii, and is making regular measurements of stratospheric ozone, temperature, and aerosol profiles.  相似文献   

5.
A study on the feasibility of using pseudorandom modulation continuous-wave (PMCW) Na lidar for mesopause-region temperature and horizontal wind measurements is presented with a number of specific geometries and associated beam-telescope overlap functions, suitable for ground-based and airborne deployments. The performance of these deployment scenarios is analyzed by scaling from the received signal and sky background and the measurement uncertainties in temperature and horizontal wind of the well-tested Colorado State University pulsed Na lidar. Using currently available high-power (~20 W) continuous-wave Na narrowband lasers, a compact PMCW bistatic Na lidar system can indeed be deployed to simultaneously measure mesopause-region temperature and horizontal winds on a 24 h continuous basis, weather permitting.  相似文献   

6.
Churnside JH  Thorne RE 《Applied optics》2005,44(26):5504-5511
Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.  相似文献   

7.
A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.  相似文献   

8.
Chu X  Pan W  Papen GC  Gardner CS  Gelbwachs JA 《Applied optics》2002,41(21):4400-4410
The design, development, and first measurements of a novel mesospheric temperature lidar are described. The lidar technique employs mesospheric Fe as a fluorescence tracer and relies on the temperature dependence of the population difference of two closely spaced Fe transitions. The principal advantage of this technique is that robust solid-state broadband laser source(s) can be used that enables the lidar to be deployed at remote locations and aboard research aircraft. We describe the system design and present a detailed analysis of the measurement errors. Correlative temperature observations, made with the Colorado State University Na lidar at Fort Collins, Colorado, are also discussed. Last, we present the initial range-resolved temperature measurements in the mesosphere and lower thermosphere over both the North and the South Poles obtained with this system.  相似文献   

9.
Papen GC  Treyer D 《Applied optics》1998,37(36):8477-8481
The modeled performance of an Fe Boltzmann temperature lidar system is compared with existing Na narrow-band temperature techniques. The Fe Boltzmann technique employs mesospheric Fe as a fluorescence tracer and relies on the temperature dependence of the population difference of two closely spaced Fe transitions. The relative performance of the new technique is compared with an existing Na narrow-band temperature technique, and a link analysis is performed with measured data for both Na and Fe. It is shown that for currently available laser technology the two systems yield similar performance but the Fe system allows for the use of more broadband lasers.  相似文献   

10.
Performance modeling of an airborne Raman water-vapor lidar   总被引:2,自引:0,他引:2  
We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable quality to an existing airborne differential absorption water-vapor lidar whereas the nighttime measurements have improved spatial and temporal resolution. In addition, an airborne Raman lidar can offer measurements that are difficult or impossible with the differential absorption lidar technique.  相似文献   

11.
Rayleigh-Mie lidar measurements of stratospheric temperature and aerosol profiles have been carried out at Reunion Island (southern tropics) since 1993. Since June 1998, an operational extension of the system is permitting additional measurements of tropospheric ozone to be made by differential absorption lidar. The emission wavelengths (289 and 316 nm) are obtained by stimulated Raman shifting of the fourth harmonic of a Nd:YAG laser in a high-pressure deuterium cell. A mosaic of four parabolic mirrors collects the backscattered signal, and the transmission is processed by the multiple fiber collector method. The altitude range of ozone profiles obtained with this system is 3?17 km. Technical details of this lidar system working in the southern tropics, comparisons of ozone lidar profiles with radiosondes, and scientific perspectives are presented. The significant lack of tropospheric ozone measurements in the tropical and equatorial regions, the particular scientific interest in these regions, and the altitude range of the ozone measurements to 16?17 km make this lidar supplement useful and its adaptation technically conceivable at many Rayleigh-Mie lidar stations.  相似文献   

12.
Behrendt A  Nakamura T  Tsuda T 《Applied optics》2004,43(14):2930-2939
We describe the performance of a combined Raman lidar. The temperature is measured with the rotational Raman technique and with the integration technique simultaneously. Additionally measured parameters are particle extinction and backscatter coefficients and water vapor mixing ratio. In a previous stage of the system, instrumental problems restricted the performance. We describe how we rebuilt the instrument and overcame these restrictions. As a result, the measurement time for the same spatial resolution and accuracy of the rotational Raman temperature measurements is reduced by a factor of approximately 4.3, and their range could be extended for the first time to the upper stratosphere.  相似文献   

13.
提出了一种新的探测对流层低层大气温度的转动拉曼激光雷达方法,通过测量N2和O2的后向散射的纯转动拉曼谱的强度,计算它们的比值来确定大气温度的垂直分布,并对其性能进行了数值模拟。转动拉曼激光雷达的光源是一个调Q的Nd:YAG激光器,经扩束器后输出能量200mJ;采用双光栅单色仪提取所需要的氮气和氧气的转动拉曼谱;接收机采用光电倍增管和双通道光子计数器,量子效率是10%(48000个脉冲累加)。夜晚它对近地面10.2km高度内的探测信噪比在10:1以上,白天它对近地面3.6km高度内的探测信噪比在10:1以上,计算的温度与模拟用的温度真值阔线相差约0.3K。  相似文献   

14.
We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements.  相似文献   

15.
An optical technique is described that determines the path-averaged value of a refractive-index structure parameter at 10.6 mum by use of a pulsed coherent CO(2) lidar in direct detection and hard-target returns. The lidar measurements are compared with measurements taken by a 0.9-mum scintillometer and temperature probe (with humidity corrections). The experimental results show good agreement for C(n)(2) >/= (-14) m(-2/3). With respect to practical applications the new technique permits C(n)(2) lidar measurements in a neutral meteorological situation to an unstably stratified convective boundary layer over long ranges (1 km or more).  相似文献   

16.
Reichardt J  Reichardt S 《Applied optics》2006,45(12):2796-2804
A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond.  相似文献   

17.
Whiteman DN 《Applied optics》2003,42(15):2571-2592
The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.  相似文献   

18.
Hua D  Kobayashi T 《Applied optics》2005,44(30):6474-6478
A UV Rayleigh-Mie scattering lidar system at 355 nm has been upgraded for more-accurate temperature profiling of the troposphere by use of a new multicavity Fabry-Perot etalon (MCFPE) filter. The MCFPE filter, which was designed to improve the stability and operational characteristics of the lidar system, has three filter bandpass functions and separates one Mie scattering and two Rayleigh scattering signals from the lidar return signal and simultaneously acts as a laser frequency discriminator to lock the laser frequency. Moreover, a high-resolution grating is employed to block signal interference from Raman scattering and the solar background. A practical lidar system, which features strong system stabilization and high measurement accuracy, has been built, and the performance of the lidar system has been verified by comparison of temperature profiling between the lidar and a radiosonde. Good agreement between the two instrument measurements was obtained in terms of lapse rate and inversion layer height. Statistical temperature errors of less than 1 K up to a height of 3 km are obtainable with 5 min observation time for daytime measurements.  相似文献   

19.
Edge technique Doppler lidar wind measurements with high vertical resolution   总被引:22,自引:0,他引:22  
Korb CL  Gentry BM  Li SX 《Applied optics》1997,36(24):5976-5983
We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m /s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m /s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m /s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1 -2-m /s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.  相似文献   

20.
Hua D  Uchida M  Kobayashi T 《Applied optics》2005,44(7):1305-1314
A Rayleigh-Mie-scattering lidar system at an eye-safe 355-nm ultraviolet wavelength that is based on a high-spectral-resolution lidar technique is demonstrated for measuring the vertical temperature profile of the troposphere. Two Rayleigh signals, which determine the atmospheric temperature, are filtered with two Fabry-Perot etalon filters. The filters are located on the same side of the wings of the Rayleigh-scattering spectrum and are optically constructed with a dual-pass optical layout. This configuration achieves a high rejection rate for Mie scattering and reasonable transmission for Rayleigh scattering. The Mie signal is detected with a third Fabry-Perot etalon filter, which is centered at the laser frequency. The filter parameters were optimized by numerical calculation; the results showed a Mie rejection of approximately -45 dB, and Rayleigh transmittance greater than 1% could be achieved for the two Rayleigh channels. A Mie correction method is demonstrated that uses an independent measure of the aerosol scattering to correct the temperature measurements that have been influenced by the aerosols and clouds. Simulations and preliminary experiments have demonstrated that the performance of the dual-pass etalon and Mie correction method is highly effective in practical applications. Simulation results have shown that the temperature errors that are due to noise are less than 1 K up to a height of 4 km for daytime measurement for 300 W m(-2) sr(-1) microm(-1) sky brightness with a lidar system that uses 200 mJ of laser energy, a 3.5-min integration time, and a 25-cm telescope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号