首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为研究综合管廊电力舱室内火灾初期温度场特征,建立1∶3.6小尺寸综合管廊模型,通过改变盛放汽油盘的大小改变火源功率,进行油池火火灾实验。运用Origin软件对温度数据进行分析,得到烟气温度与距离的衰减经验公式;运用FDS软件对与实验相同工况下的几何模型进行计算机模拟,以验证FDS模拟结果准确性。实验结果表明:不同火源功率下,烟气温度均呈现幂函数衰减;火源功率较大时,温度衰减梯度也较大;对距火源0.3m处垂直方向上烟气温度进行分析得知,火灾烟气蔓延过程中存在烟气分层现象。通过FDS模拟结果与实验结果对比,得出两者结果较为相近。  相似文献   

2.
针对特殊结构的T 型地下综合管廊,运用FDS 软件模拟不同火源位置及风速条件下管廊内电缆火灾的蔓延情况,分析火灾发生后管廊温度场以及烟气蔓延情况。对T 型管廊内不同位置处起火的火灾危险性进行排序,得到管廊内部风速为1.5m/s 且电缆处于稳定燃烧期时,交叉口处的烟气层高度最低,发现T 型交叉口处的烟气特性,为T 型地下综合管廊消防设计提供参考。  相似文献   

3.
为了研究地铁区间隧道火灾临界风速和温度变化规律,建立了西安某地铁站区间隧道模型,采用FDS模拟软件对不同纵向通风条件下烟气流动和温度分布进行模拟。介绍模型的基本参数,根据Froude相似性原理建立了各个燃烧参数的相似性关系。利用FDS模拟不同火灾功率、不同通风速度时的温度和烟气速度分布。对比分析5、6、7、8、9、10 MW火灾功率下的临界风速变规律化并提出预测模型。结果表明:纵向通风风速设为3m/s时对防止9 MW以下的火源功率火灾烟气回流效果明显;热释放速率不大于10 MW时,隧道火灾中烟气温度不大于250℃,火源下风侧烟气流动速度不大于4 m/s。  相似文献   

4.
为探究弯曲隧道的火灾特性,研究曲率对弯曲隧道火灾烟气蔓延的影响规律,使用火灾动力学模拟软件PyroSim,对不同曲率弯曲隧道的临界风速、温度分布、烟气蔓延规律及顶棚温度衰减规律进行研究。结果表明:在同一火源功率和火源位置的情况下,临界风速与隧道曲率呈正相关性;由于壁面沿程阻力的特殊性,弯曲隧道内高温烟气在隧道内侧的传播速度更快,并且随着火灾持续时间增加,隧道两侧烟气传播速度的差距增大;火灾的顶棚温度衰减与曲率呈正相关,给出了曲率为0.6%、0.5%、0.3%、0.25%、0.14%的顶棚温度衰减预测模型。  相似文献   

5.
通过实体实验及FDS数值模拟研究细水雾对综合管廊火灾烟气的影响规律。实验采用支线综合管廊,尺寸为12.0m×2.5 m×2.9 m,两端开口,风速0 m/s。实验结果及模拟结果表明:细水雾能有效降低管廊顶棚温度,火源正上方降温效果最明显;但细水雾作用会增加管廊顶棚烟气浓度和管廊内空气流动速度,降低烟气扩散高度,并使管廊内出现空气回流现象。  相似文献   

6.
为研究综合管廊内电缆燃烧烟气温度特征,建立了1∶3.6小尺寸综合管廊模型,进行电缆火灾燃烧实验,对温度数据进行分析。结果表明:火灾烟气温度存在纵向衰减,且距火源越近处衰减速度越快;电缆水平燃烧蔓延速度约为0.023 5 m/min;与火源同一横截面、距火源0.3 m处垂直方向上烟气温度呈现出明显的跳跃现象;与水平方向夹角45°处是弧度方向上烟气温度由低温向高温的过渡位置。应加强综合管廊内上部结构的抗火性能以及与水平方向夹角45°及以上区域的防火设计。  相似文献   

7.
类比应用地铁隧道火灾的相关理论,分析在有风情况下,城市地下综合管廊火灾烟气的蔓延情况。通过对管廊火灾形式的调查发现,管廊火灾以电缆火灾为主。利用小尺寸模型和数值模拟两种手段对有风情况下的管廊火灾进行研究。结果表明:管廊火灾临界风速基本符合烟气逆流长度经验公式;管廊烟气蔓延过程可以分为三个过程,宏观上可以认为管廊烟气蔓延是一维蔓延过程;随着蔓延距离的增加,烟气的蔓延速度逐渐降低,并在距离火源30 m处出现拐点。  相似文献   

8.
为研究室外风对走廊中火灾烟气分层特性和自然排烟的影响,在相似原理的基础上开展了1/3 缩尺寸实验。通过改变火源功率、室外风速和外窗尺寸,结合对走廊火灾烟气分层特性和自然排烟效果的判断,找出使分层失效的临界室外风速以及使自然排烟失效的临界室外风速,运用量纲分析和数据拟合的方法分析无量纲火源功率和无量纲临界失效风速之间的关系。研究发现,温度分层无量纲临界失效风速与无量纲火源功率呈现良好的线性关系,温度分层临界失效风速随窗口尺寸减小而增大;自然排烟无量纲临界失效风速与无量纲火源功率呈现显著的对数函数关系,窗口尺寸相同时,火源功率越大,自然排烟临界失效风速越大。  相似文献   

9.
开展相似试验,研究相向射流与竖井协同作用下,公路隧道火灾烟气分层稳定性与火源功率、相向射流风速及测点位置之间的关联关系。试验设计了3组共50个工况,分析了不同工况下不同位置处的火灾烟气分层稳定性。试验结果表明:上下游风速差值越小,火灾烟气分层越稳定,上下游风速差值越大,火灾烟气层越紊乱。相向射流风速相同,火源功率对火灾烟气分层稳定性并无明显影响。由于热浮力、射流及竖井抽吸作用力之间的相互作用,不同位置处火灾烟气分层稳定性呈现出差异性。  相似文献   

10.
为了研究火源位置对城市综合管廊电缆舱火灾温度场分布的影响,建立了1:1.9小尺寸综合管廊模型,在管廊圆截面上进行0°、45°、90°和135°四种火源位置的地下综合管廊电缆舱火灾实验。结果表明,火源角度越大,质量损失速率越大,热释放速率越高;管廊顶棚下方最高温升与火源距顶棚的距离和无量纲释热速率有关,对实验数据进行整合分析,给出了与火源位置有关的管廊顶棚下方最高温升模型;烟气层厚度和火源与顶板之间的距离正相关,并验证了热电偶树温升判别法测量烟气层厚度的可行性;顶棚温度沿纵向呈指数规律衰减,且火源角度越大,衰减趋势越大。  相似文献   

11.
建立等比例综合管廊数值模型,采用FDS模拟了通风风速为0、0.4、0.8、1.2 m/s下电缆舱着火工况的细水雾灭火效果,分析风速对灭火效果的影响以及纵向通风与细水雾共同作用下的烟气蔓延情况。结果表明,随着通风风速的增加,尽管管廊内部的含氧量增加,但火源及正上方温度下降,很大程度上减缓了火源竖向发展趋势。研究结果证明了高压细水雾灭火系统的有效性。城市综合管廊采用细水雾系统时,施加不高于1.2 m/s风速的通风气流对细水雾灭火更为有利。  相似文献   

12.
为研究管廊内火源高度与防火封堵耦合作用下的温度分布,搭建了1:3的缩尺寸马蹄形管廊模型,通过改变火源的高度和管廊一端的开闭情况,分析管廊内的温度分布.结果表明,高度为10 cm的火源较其他高度的火源在管廊一端封闭的情况下最高温度值最大.在垂直方向上,管廊内的烟气层厚度与火源高度和一端是否封闭关系不大,始终为17 cm左...  相似文献   

13.
城市地下综合管廊电缆火灾危险性极大。运用FDS软件模拟液氮和机械排烟共同作用、仅有机械排烟以及无液氮和机械排烟3 种工况下,综合管廊内部电缆火灾蔓延情况。分析火灾发生后综合管廊内部烟气蔓延及温度分布,发现液氮和机械排烟的共同作用能迅速扑灭火灾从而减小由于发生火灾造成严重后果的危险程度。分析不同的注氮速度和机械排烟速度对扑灭综合 管廊电缆火灾的影响,发现适当增加注氮速度和排烟速度有利于扑灭电缆火灾。  相似文献   

14.
采用试验与数值模拟研究隧道双火源火灾临界风速变化,重点研究双火源功率和火源间距对临界风速的影响。结果表明:随着火源间距增加,临界风速逐渐降低,当两火源间距达到极限距离时,临界风速不再变化;当进风口侧火源功率确定时,在极限间距内出风口侧火源功率增大时,临界风速增大,说明出风口侧的火源对进风口侧的烟气回流有促进作用;在极限间距内,临界风速随火源间距增加呈二次方递减到一个稳定值;两火源总功率越大,临界风速随着间距增加降低的幅度越明显。并得到了临界风速的预测公式。  相似文献   

15.
通过开展相似试验,研究在相向射流与竖井自然排烟组合模式下,火源位置、风速和火源功率对烟气控制段长度的影响。试验考虑了3种组况,53种工况,通过改变火源位置、风速和火源功率,分析讨论了不同工况下火源烟气控制段长度。试验表明,增加上游(距离火源更近端)风速,会导致上游烟气控制段减少;增加下游(距离火源更远端)的风速,烟气控制段长度会受到火源功率、火源位置等多种因素的耦合作用。增大火源功率会增加烟气热浮力,使下游机械风对烟气的影响减弱。  相似文献   

16.
针对不同断面宽度隧道中发生火灾时的火风压变化问题,利用Fluent软件模拟隧道内发生火灾的情况,分析隧道宽度对临界风速的影响以及隧道宽度、火源功率和通风速度对火风压的影响。研究表明,火源功率较小时,宽度越小的隧道,临界风速越大;随着火源功率的增大,临界风速之间的差距减小。火风压中火区绕流阻力和热烟摩阻增量会随着风速的增大而相互作用。导致火风压会先随风速的增大而增大,到达一个峰值后会随着风速增大而减小,最后当通风速度增大到临界风速后趋于稳定的数值。随着隧道宽度的增大,通风速率对火风压的影响逐渐减弱。建立不同宽度隧道在不同通风速率和火源功率下的隧道火风压计算公式,为隧道火灾通风设计提供参考。  相似文献   

17.
基于 2019 年山东“11·19”火灾事故,利用 PyroSim软件构建压入式掘进巷道内的火灾模型,实现了总长 400 m、火源位于 200 m 处的掘进巷道内,风筒烧断与未烧断两种情况、不同火源功率下的火灾模拟。结果表明:在压入式巷道中发生火灾,一旦风筒烧断,火灾发展将更加迅速;一定条件下巷道中火场内被困区温度、烟气遮光率随时间推移和风流作用会迅速增大;火源功率越大,被困区受到危险的时间越短。  相似文献   

18.
为了研究不同车辆火灾规模下大跨径双层悬索桥的抗火性能,以主跨2 180 m的特大跨径双层悬索桥为研究对象,首先利用火灾动力学软件FDS建立悬索桥热分析模型,研究不同火源功率、火源位置、环境风向等因素对双层悬索桥的温度分布规律的影响,得到悬索桥关键构件温度-时间关系曲线。然后,利用有限元软件ABAQUS开展双层悬索桥热-力耦合数值仿真分析,选取高温下钢材及高强钢丝热工参数,研究悬索桥吊杆、加劲梁、桥面板的高温力学性能时变特征,对比不同环境风速、桁架高度、火源特性及位置等工况下双层悬索桥结构应力、变形及构件损伤行为,确定特大跨径双层悬索桥抗火关键部位及其耐火需求。最后,基于数值模拟结果,初步提出了双层悬索桥结构防火设计建议。结果表明:受火桥段的应力发展及失效位置与火源位置、功率及环境风向密切相关。当车辆起火位置位于桥梁下层时,由于桥面铺装隔热作用,下层结构受火灾影响较小。而热气流致使上部结构温度明显高于下部,火源附近的上层纵横梁、桥面板和吊杆等构件温度快速上升。由于钢材热膨胀效应,导致构件快速升温膨胀,膨胀时受到周围杆件的限制,导致压应力逐步增加。(1)火源位置:当火源位于横桥向中间车道,高应力区域集中在非机动车道上层纵横梁及桥面板。当火源位于横桥向非机动车道时,火源附近的上层桥面板发生强度破坏。(2)火源功率:随着火源功率增加,火场对桥梁高温影响效应增强,关键构件温度均逐渐增大,高温影响范围变大。火源功率为30 MW,在6 000 s内未发生强度破坏;火源功率为100 MW,其耐火时间为653 s;火源功率为200 MW,其耐火时间为413 s。可以看出,随着火源功率增大,桥梁结构耐火时间显著降低,最大降低可达93.11%。(3)环境风向:当火源位于横桥向应急车道,在外向风作用下,与两侧桁架相连的上层桥面板发生强度破坏;在内向风作用下,非机动车道附近的上层桥面板发生强度破坏。在内向风作用下受火桥段耐火时间为528 s,与外向风工况下相比,其耐火时间增加了3.0%。针对车辆火灾下大跨径双层悬索桥,应根据受火结构危险性进行抗火等级划分,并按等级进行分级抗火防护设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号