首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volumetric datasets with multiple variables on each voxel over multiple time steps are often complex, especially when considering the exponentially large attribute space formed by the variables in combination with the spatial and temporal dimensions. It is intuitive, practical, and thus often desirable, to interactively select a subset of the data from within that high-dimensional value space for efficient visualization. This approach is straightforward to implement if the dataset is small enough to be stored entirely in-core. However, to handle datasets sized at hundreds of gigabytes and beyond, this simplistic approach becomes infeasible and thus, more sophisticated solutions are needed. In this work, we developed a system that supports efficient visualization of an arbitrary subset, selected by range-queries, of a large multivariate time-varying dataset. By employing specialized data structures and schemes of data distribution, our system can leverage a large number of networked computers as parallel data servers, and guarantees a near optimal load-balance. We demonstrate our system of scalable data servers using two large time-varying simulation datasets.  相似文献   

2.
In this survey article, we review glyph-based visualization techniques that have been exploited when visualizing spatial multivariate medical data. To classify these techniques, we derive a taxonomy of glyph properties that is based on classification concepts established in information visualization. Considering both the glyph visualization as well as the interaction techniques that are employed to generate or explore the glyph visualization, we are able to classify glyph techniques into two main groups: those supporting pre-attentive and those supporting attentive processing. With respect to this classification, we review glyph-based techniques described in the medical visualization literature. Based on the outcome of the literature review, we propose design guidelines for glyph visualizations in the medical domain.  相似文献   

3.
Brushing of attribute clouds for the visualization of multivariate data   总被引:1,自引:0,他引:1  
The visualization and exploration of multivariate data is still a challenging task. Methods either try to visualize all variables simultaneously at each position using glyph-based approaches or use linked views for the interaction between attribute space and physical domain such as brushing of scatterplots. Most visualizations of the attribute space are either difficult to understand or suffer from visual clutter. We propose a transformation of the high-dimensional data in attribute space to 2D that results in a point cloud, called attribute cloud, such that points with similar multivariate attributes are located close to each other. The transformation is based on ideas from multivariate density estimation and manifold learning. The resulting attribute cloud is an easy to understand visualization of multivariate data in two dimensions. We explain several techniques to incorporate additional information into the attribute cloud, that help the user get a better understanding of multivariate data. Using different examples from fluid dynamics and climate simulation, we show how brushing can be used to explore the attribute cloud and find interesting structures in physical space.  相似文献   

4.
Most of the available multivariate statistical models dictate on fitting different parameters for the covariate effects on each multiple responses. This might be unnecessary and inefficient for some cases. In this article, we propose a modelling framework for multivariate marginal models to analyze multivariate longitudinal data which provides flexible model building strategies. We show that the model handles several response families such as binomial, count and continuous. We illustrate the model on the Kenya Morbidity data set. A simulation study is conducted to examine the parameter estimates. An R package mmm2 is proposed to fit the model.  相似文献   

5.
When used for visualization of high-dimensional data, the self-organizing map (SOM) requires a coloring scheme, such as the U-matrix, to mark the distances between neurons. Even so, the structures of the data clusters may not be apparent and their shapes are often distorted. In this paper, a visualization-induced SOM (ViSOM) is proposed to overcome these shortcomings. The algorithm constrains and regularizes the inter-neuron distance with a parameter that controls the resolution of the map. The mapping preserves the inter-point distances of the input data on the map as well as the topology. It produces a graded mesh in the data space such that the distances between mapped data points on the map resemble those in the original space, like in the Sammon mapping. However, unlike the Sammon mapping, the ViSOM can accommodate both training data and new arrivals and is much simpler in computational complexity. Several experimental results and comparisons with other methods are presented.  相似文献   

6.
This paper reports on some advances in generic data processing procedures with focus on a specific materials discovery and design task. The task is to predict whether a new ternary materials system would be compound forming or not, with the prediction to be based on knowledge of many other known exemplars. The activities and results of three related efforts are described in condensed form in this paper. In one effort, using a combination of clustering and mapping procedures, an accuracy of more than 99% was attained in predicting the category status (compound forming or not) of new ternary systems. A second effort addressed the question of how to identify redundant or superfluous features. A procedure for identifying the extent of functional dependency amongst features was developed. That procedure can be used to remove redundant features. A third effort addressed the question of how to obtain reduced dimension representations of multivariate data, albeit at the cost of loss of some information. Visualizations of low-dimensional representations can be helpful in building up holistic views of data space for use in exploration and discovery of new materials.  相似文献   

7.
8.
随着三维地质信息系统发展与应用的深入,对地学数据的可视化需求更加迫切。采用面向对象的思想设计并实现了一个可扩展的多元地学数据一体化显示框架。该框架主要划分为模型层、场景层和渲染层,使得数据与绘制流程分离。围绕此框架详细阐述了绘制管线、绘制过程的设计和多层次地学场景组织,满足地质多领域、多专题数据的统一显示与分析需要。基于此框架在OpenGL环境下开发了北京市三维城市地质信息管理与服务系统。  相似文献   

9.
We introduce an information visualization technique, known as GreenCurve, for large multivariate sparse graphs that exhibit small-world properties. Our fractal-based design approach uses spatial cues to approximate the node connections and thus eliminates the links between the nodes in the visualization. The paper describes a robust algorithm to order the neighboring nodes of a large sparse graph by solving the Fiedler vector of its graph Laplacian, and then fold the graph nodes into a space-filling fractal curve based on the Fiedler vector. The result is a highly compact visualization that gives a succinct overview of the graph with guaranteed visibility of every graph node. GreenCurve is designed with the power grid infrastructure in mind. It is intended for use in conjunction with other visualization techniques to support electric power grid operations. The research and development of GreenCurve was conducted in collaboration with domain experts who understand the challenges and possibilities intrinsic to the power grid infrastructure. The paper reports a case study on applying GreenCurve to a power grid problem and presents a usability study to evaluate the design claims that we set forth.  相似文献   

10.
Management of the tendering phase of the public contract lifecycle is a demanding activity with often irrevocable impact on the subsequent realization phase. We investigate the impact of the linked data technology on this process.  相似文献   

11.
It is important for environment protection to monitor changes in the environment by natural and human causes. It is also important to educate the next generation on the importance of the global environment issues. Recently, it has become possible to continually monitor the global environment using various satellite sensor data. But these satellite data are used for highly specialized analysis by experts in such fields, and the data cannot easily be used by non-experts. In this paper, we propose a satellite data visualization system for educational use. In the proposed system, a gray-scale 2-dimensional image is created from the satellite data. Next, a pseudo-color image is created from the gray-scale image to assist the comprehension of the data. A 3-dimensional data representation of the image is also created, to assist the comparison of the individual data. The aim of the created image is for educational use, and the image is created with emphasis on comprehension of the data, rather than presentation of data details. The aim of the proposed system is presenting the satellite data visually so that non-experts can easily understand. The target of this research is to apply the proposed system for natural science education and to improve the awareness of global environmental issues.  相似文献   

12.
Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data.  相似文献   

13.
The forward search provides a series of robust parameter estimates based on increasing numbers of observations. The resulting series of robust Mahalanobis distances is used to cluster multivariate normal data. The method depends on envelopes of the distribution of the test statistics in forward plots. These envelopes can be found by simulation; flexible polynomial approximations to the envelopes are given. New graphical tools provide methods not only of detecting clusters but also of determining their membership. Comparisons are made with mclust and k-means clustering.  相似文献   

14.
A principal component method for multivariate functional data is proposed. Data can be arranged in a matrix whose elements are functions so that for each individual a vector of p functions is observed. This set of p curves is reduced to a small number of transformed functions, retaining as much information as possible. The criterion to measure the information loss is the integrated variance. Under mild regular conditions, it is proved that if the original functions are smooth this property is inherited by the principal components. A numerical procedure to obtain the smooth principal components is proposed and the goodness of the dimension reduction is assessed by two new measures of the proportion of explained variability. The method performs as expected in various controlled simulated data sets and provides interesting conclusions when it is applied to real data sets.  相似文献   

15.
A visualization system for space-time and multivariate patterns (VIS-STAMP)   总被引:4,自引:0,他引:4  
The research reported here integrates computational, visual and cartographic methods to develop a geovisual analytic approach for exploring and understanding spatio-temporal and multivariate patterns. The developed methodology and tools can help analysts investigate complex patterns across multivariate, spatial and temporal dimensions via clustering, sorting and visualization. Specifically, the approach involves a self-organizing map, a parallel coordinate plot, several forms of reorderable matrices (including several ordering methods), a geographic small multiple display and a 2-dimensional cartographic color design method. The coupling among these methods leverages their independent strengths and facilitates a visual exploration of patterns that are difficult to discover otherwise. The visualization system we developed supports overview of complex patterns and through a variety of interactions, enables users to focus on specific patterns and examine detailed views. We demonstrate the system with an application to the IEEE InfoVis 2005 contest data set, which contains time-varying, geographically referenced and multivariate data for technology companies in the US  相似文献   

16.
17.
Interest in visualization has grown in recent years, producing rapid advances in the diversity of research and in the scope of proposed techniques. Much of the initial focus in computer-based visualization concentrated on display algorithms, often for specific domains. For example, volume, flow, and terrain visualization techniques have generated significant insights into fundamental graphics and visualization theory, aiding the application experts who use these techniques to advance their own research. More recent work has extended visualization to abstract data sets like network intrusion detection, recommender systems, and database query results. This article describes our initial end-to-end system that starts with data management and continues through assisted visualization design, display, navigation, and user interaction. The purposes of this discussion are to (i) promote a more comprehensive visualization framework; (ii) describe how to apply expertise from human psychophysics, databases, rational logic, and artificial intelligence to visualization; and (iii) illustrate the benefits of a more complete framework using examples from our own experiences.  相似文献   

18.
Selective visualization is a solution for visualizing data of large size and dimensionality. In this paper a new method is proposed for effectively rendering certain chosen parts among the full set of data in terms of a colour buffer, referred to as the virtual plane, for storing intermediate results. By this method, scientists may concentrate their attention on the contents of data in which they are interested. Besides, the method could be easily integrated with all the current direct volume rendering techniques, especially progressive refinement methods and selective methods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.

Change point detection algorithms have numerous applications in areas of medical condition monitoring, fault detection in industrial processes, human activity analysis, climate change detection, and speech recognition. We consider the problem of change point detection on compositional multivariate data (each sample is a probability mass function), which is a practically important sub-class of general multivariate data. While the problem of change-point detection is well studied in univariate setting, and there are few viable implementations for a general multivariate data, the existing methods do not perform well on compositional data. In this paper, we propose a parametric approach for change point detection in compositional data. Moreover, using simple transformations on data, we extend our approach to handle any general multivariate data. Experimentally, we show that our method performs significantly better on compositional data and is competitive on general data compared to the available state of the art implementations.

  相似文献   

20.
Wan  Xiaoji  Li  Hailin  Zhang  Liping  Wu  Yenchun Jim 《The Journal of supercomputing》2022,78(7):9862-9878

A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to address these issues. In this paper, we propose a method based on principal component analysis (PCA) to effectively reduce the dimensionality. We call it “piecewise representation based on PCA” (PPCA), which segments multivariate time series into several sequences, calculates the covariance matrix for each of them in terms of the variables, and employs PCA to obtain the principal components in an average covariance matrix. The results of the experiments, including retained information analysis, classification, and a comparison of the central processing unit time consumption, demonstrate that the PPCA method used to reduce the dimensionality in multivariate time series is superior to the prior methods.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号