首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Suspended particulate matter (SPM) was collected seasonally for 1 yr at third- and fifth-order sites in a blackwater stream on the coastal plain in South Carolina. Fatty acids with carbon chain lengths from C(12)-C(32) were the most abundant component among the lipid classes examined with total concentrations varying from 8.5 to 60.2 microgL(-1). Unsaturated fatty acids predominated while significant concentrations of the even-chained saturated components C(24)-C(30) derived from cuticular plant waxes were also found. Concentrations of aliphatic alcohols, with carbon chain lengths between C(16) and C(30), ranged from 0.52 to 2.73 microgL(-1) and was dominated by the higher molecular weight compounds (C(22)-C(30)) derived primarily from cuticular plant waxes. Total hydrocarbon concentrations ranged from 0.35 to 5.66 microgL(-1) and showed no discernible trends with time or consistent difference between sites. The hydrocarbon assemblage observed indicates that these components are entirely of biogenic origin with no detectable anthropogenic contribution.The ratios of unsaturated to saturated fatty acids and cuticular to noncuticular fatty acids and alcohols at both stream locations indicate that the organic detritus associated with SPM collected during November and January is of more recent origin and less processed than that collected in the spring and summer months. Lipid concentrations at the third-order site generally had higher and more variable concentrations of the lipid classes compared with the fifth-order site. The ratio of saturated to unsaturated fatty acids was higher at the third-order site indicating that the organic fraction of SPM at this site was of more recent origin and less decomposed. The ratios of cuticular to noncuticular fatty acids and alcohols support this conclusion. These results indicate an export of particulate lipids of higher carbon resource quality from upstream to lower stream reaches.  相似文献   

2.
The sorption kinetics of the divalent metals Zn, Co, Ni, and Cd to hematite were studied in single sorbate systems with high sorbate/sorbent ratios (from 1.67 to 3.33mol sorbate/mol sorption sites) in 10mM Na-piperazine N,N'-bis 2-ethane sulfonic acid (Na-PIPES) solution at pH 6.8. The experimental data showed a rapid initial sorption (half-time about 1min) followed by slower sorption that continued for 1-5 days. The sequence of fast to slow sorption kinetics was modeled by slow inner-sphere (IS) complexation in equilibrium with outer-sphere (OS) complexes. Although the OS reaction was fast and considered to be in equilibrium, the extent of OS complexation changed over time due to increased surface potential from the IS complexes. For example, the model showed that the dimensionless OS complexation function, K(os), decreased from 0.014 initially to 0.0016 at steady state due to sorption of 4x10(-5)M Zn(II) to 2gL(-1) hematite. Sorption rate constants, k(ads), for the various divalent metals ranged from 6.1 to 82.5M(-1)s(-1). Desorption rate constants, k(des), ranged from 5.2x10(-7) to 6.7x10(-5)s(-1). This study suggests that the conversion from OS to IS complex was the rate-determining step for the sorption of divalent metals on crystalline adsorbents.  相似文献   

3.
《Water research》1996,30(2):465-475
The adsorption of vanadium (IV) by chitosan, a naturally occurring material, is studied according to equilibrium and kinetics. Sorption isotherms are determined and single mechanisms of diffusion are studied. These are regarded as the main limiting steps. The parameters studied are: pH, the initial metal concentration, the particle size of the polymer and the stirring speed. While the fourth parameter has no effect on overall sorption performances, equilibrium and kinetics are greatly influenced by the other three. The speciation of metal in solution, relative to pH and total metal concentration, plays an important part in the separation factor between the solid and liquid phases, and on the diffusion of solute through the polymer surface. It has been demonstrated that the sorption, in the case of chitosan is mainly located on the surface. The diffusion mechanisms are both external and intraparticle phenomena: but diffusion is restricted to a thin layer of the particle. An increase of the particle size results in a greater time to reach equilibrium. The Langmuir and Freundlich models show relative correlations difficult to estimate considering to the pseudo rectangular isotherm obtained: the equilibrium plateau is quickly reached.  相似文献   

4.
Arsenic-rich (~ 140-1520 mg.kg− 1) suspended particulate matter (SPM) was collected daily with an automatic sampler in the Upper Isle River (France) draining a former gold mining district in order to better understand the fate of arsenic during the suspended transport (particles smaller than 50 μm). Various techniques at a micrometric scale (EPMA, quantitative SEM-EDS with an automated particle counting including classification system and μXRD) were used to directly characterize As-bearing phases. The most frequent ones were aggregates of fine clay particles. Their mineralogy varied with particle sources involved. These aggregates were formed by chlorite-phlogopite-kaolinite assemblages during the high flow and chlorite-illite-montmorillonite during the low flow. Among all the observed As-carriers in SPM, these clay assemblages were the least As-rich (0.10 up to 1.58 wt.% As) and their median As concentrations suggested that they were less concentrated during the high flow than during the low flow. Iron oxyhydroxides were evidenced by μXRD in these clay aggregates, either as micro- to nano-sized particles and/or as coating.(Mn, Fe)oxyhydroxides were also present as discrete particles. Manganese oxides (0.14-1.26 wt.% As) transport significantly more arsenic during the low flow than during the high flow (0.16-0.79 wt.% As). The occurrence of Fe oxyhydroxide particles appeared more complex. During the low flow, observations on banks and in wetlands of freshly precipitated Fe hydroxides (ferrihydrite-type) presented the highest As concentrations (up to 6.5 wt.% As) but they were barely detected in SPM at a microscale. During the high flow, As-rich Fe-oxyhydroxides (0.10-2.80 wt.% As) were more frequent, reflecting mechanical erosion and transport when the surface water level increased.Arsenic transfers from SPM to corresponding aqueous fraction mostly depend on As-carrier stability. This study shows the temporal occurrence of each type of As-bearing phases in SPM, their As concentrations at a particle scale and abundance according to hydrological periods.  相似文献   

5.
A large database (507 station-years) of daily suspended particulate matter (SPM) concentration and discharge data from 36 stations on river basins ranging from 600 km(2) to 600,000 km(2) in size (USA and Europe) was collected to assess the effects of SPM transport regime on bias and imprecision of flux estimates when using infrequent surveys and the discharge-weighted mean concentration method. By extracting individual SPM concentrations and corresponding discharge values from the database, sampling frequencies from 12 to 200 per year were simulated using Monte Carlo techniques. The resulting estimates of yearly SPM fluxes were compared to reference fluxes derived from the complete database. For each station and given frequency, bias was measured by the median of relative errors between estimated and reference fluxes, and imprecision by the difference between the upper and lower deciles of relative errors. Results show that the SPM transport regime of rivers affects the bias and imprecision of fluxes estimated by the discharge-weighted mean concentration method for given sampling frequencies (e.g. weekly, bimonthly, monthly). The percentage of annual SPM flux discharged in 2% of time (Ms(2)) is a robust indicator of SPM transport regime directly related to bias and imprecision. These errors are linked to the Ms(2) indicator for various sampling frequencies within a specific nomograph. For instance, based on a deviation of simulated flux estimates from reference fluxes lower than +/-20% and a bias lower than 1% or 2%, the required sampling intervals are less than 3 days for rivers with Ms(2) greater than 40% (basin size<10,000 km(2)), between 3 and 5 days for rivers with Ms(2) between 30 and 40% (basin size between 10,000 and 50,000 km(2)), between 5 and 12 days for Ms(2) from 20% to 30% (basin size between 50,000 and 200,000 km(2)), 12-20 days for Ms(2) in the 15-20% range (basin size between 200,000 and 500,000 km(2)).  相似文献   

6.
Rivers, streams and municipal and industrial effluents flowing into the Ferrol Ria (NW Spain) were analyzed for dissolved and particulate trace elements (Cd, Cu, Pb, Zn), particulate major elements (Al, Fe, Si), particulate organic carbon and nitrogen (POC and PON), and total suspended solids. Trace metal clean techniques were applied. Mean annual fluxes of these components were calculated. Dissolved trace metal concentrations in the major freshwater inputs were found to be within typical values for uncontaminated rivers: Cd: 0.020-0.035 nM; Cu: 11.7-19.2 nM; Pb: 0.40-0.71 nM and Zn: 18-54 nM. Two sources of suspended particulate matter (SPM) were observed: (i) a detrital SPM, which becomes more important at high river discharges, with metal concentrations tending to lithogenic values; (ii) an organic- and metal-rich SPM, which becomes dominant at low discharges. Municipal and industrial effluents in the northern shore, despite of constitute a minor freshwater contribution to the bay, were responsible for more than 50% of total inputs of Cu, Cd, Pb, Zn, POC and PON. The fluxes of trace metals obtained for the Ferrol Ria are in the range of other inhabited world semi-enclosed embayments.  相似文献   

7.
Park JH  Feng Y  Cho SY  Voice TC  Boyd SA 《Water research》2004,38(18):3881-3892
Soil-chemical contact time (aging) is an important determinant of the sorption and desorption characteristics of the organic contaminants and pesticides in the environment. The effects of aging on mechanism-specific sorption and desorption of atrazine were studied in soil and clay slurries. Sorption isotherm and desorption kinetic experiments were performed, and soil-water distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil and clay slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear (r(2)>0.97) and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients (K(d)) increased with increase in age in all five soils studied, but not for K-montmorillonite. Sorption non-linearity did not increase with increase in age except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction (f(eq)) decreased and the non-desorbable site fraction (f(nd)) increased as a function of aging time in all soils. For K-montmorillonite, f(nd) approximately 0 regardless of aging, showing that aging phenomena are sorbent/mechanism specific. In all soils, it was found that when normalized to soil organic matter content, the concentration of atrazine in desorbable sites was relatively constant, whereas that in non-desorbable site increased. This, and the lack of aging effects on desorption from montmorillonite, suggests that sorption into non-desorbable sites of soil organic matter is primary source of increased atrazine sorption in soils during aging.  相似文献   

8.
Here we present original data on the geochemical composition of fluvial particulate matter transported by the rivers of the Adour/Garonne basin, which drains one-fifth of the French land surface. Suspended particulate matter from the six main rivers in the basin, sampled at 'normal' flow and during a flood, is compared in terms of: grain size; particulate organic carbon; Fe; Mn; and trace element concentrations (e.g. Zn, Cd, Pb, Cu, Mo, Sn, Ni, Co, Cr, V, As, Hg, U, Th, W, Au, Ag, Ta). Three of the six studied rivers (Garonne, Dordogne and Isle Rivers) are the main tributaries of the Gironde estuary (southwest France), known for Cd pollution. The Adour and Gaves Rivers enter the Adour Estuary and the Charente River reaches the ocean by the Charente Estuary. Our data show, that Cd (and Zn) are not the only trace elements of eco-toxicological relevance transported into the Gulf of Biscay by these six rivers. Potentially toxic elements (e.g. As, Sn, U, Cu, Ag) show elevated concentrations in river particulates entering the estuaries, compared to world average concentrations [Martin and Whitfield, 1983, The significance of the river input of chemical elements to the oceans. In: C.S. Wong, E. Boyle, K.W. Bruland, J.D. Burton, E.D. Goldberg (editors), Trace Metals in Sea Water, Plenum, New York: pp. 265-296]. Comparing SPM sampled during 'normal' discharge and flood, the basin shows a distinct trace element composition of SPM mostly related to ore deposits in the upper basins (Massif Central and Pyreneans). This geochemical signal is partly masked during floods due to changes in grain size, but also due to increased erosion of the lower parts of the basins. This study proves pumping/centrifugation to be the most appropriate sampling/separation technique (recovery, representativity, contamination) by comparing different methods of SPM recovery.  相似文献   

9.
The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very specific: there is a marked decontamination from 1970 to 2000, but the leakage ratio remains very high (10 to 20%) during this period. Drivers and Pressures are poorly known prior to 1985; State evolution since 1935 has been reconstructed from flood plain cores analysis; Impacts were maximum between 1950 and 1970 but remained unknown due to analytical limitation and lack of awareness. Some Responses are lagging 10 y behind monitoring and have much evolved in the past 10 y.  相似文献   

10.
Correlations between trace metals in dissolved and particulate phases, zooplankton, mussels and sediments in Lake Balaton were investigated. The degree of correlation between the various metals was different in each of the investigated compartments. Particulate metal concentrations (microg g(-1)) were anti-correlated with suspended particulate matter (SPM) (mg l(-1)), indicating a dilution effect, while total metal concentrations in the water column (microg l(-1)) were highly correlated with SPM, implying a major influence of the turbidity on the total metal concentrations. Between compartments, not many significant correlations were recognized. Only Ba, Ca, Sr and Mg are correlated in the sediments and in the particulate phase, suggesting common sources for both compartments. Partitioning coefficients (Kd) of trace metals between dissolved and particulate phases are generally low, typical for natural water and fairly stable over the lake. Most of the trace metals (Zn, Co, Cd and Pb) exist in the particulate phase (for about 70% of the total metal load). Cu and Ni are exceptions, showing a more equal distribution. Bioconcentration factors (BCF) of zooplankton and mussels were comparable to those of other natural waters. A negative biomagnification from suspended particulate matter to zooplankton and from sediment to mussel was recognized for all trace metals, except a small enrichment of Zn in zooplankton and Cd in mussel. Four factors were recognized in SPM and in sediments but they did not contain the same group of metals. Cluster analysis showed that metal accumulations in the sediments were different between northern and southern shores and in SPM between western and eastern areas.  相似文献   

11.
The present paper is based on discharges and suspended particulate matter concentrations from a 9-years high-resolution database for the Garonne River (large plain river) covering contrasted hydrologic years, and a 12-months high frequency sampling for the Nivelle River (small mountainous river). Annual SPM fluxes in the Garonne River range from 0.6 x 10(6) t year(-1) (1997) to 3.9 x 10(6) t year(-1) (1996). In contrast, the Nivelle River transported 11 x 10(3) t year(-1) from December 1995 to December 1996. From the long-term observation of the Garonne River an empirical relation between SPM* (discharge-weighted mean annual SPM concentrations) and annual discharge was established. This relation allows estimating annual SPM fluxes for the Garonne River with less than 30% deviation from reference values for the whole range of mean annual discharge observed during the past decade. Specific (=area-normalized) annual SPM fluxes (YSPM) range from 11 to 74 t km(-2) year(-1) for the Garonne River. Comparison of these results with YSPM of the Nivelle River (69 t km(-2) year(-1) in 1996) suggests that interannual hydrological variations may have a greater impact on fluvial SPM transport than basin-specific parameters. By extracting individual SPM concentrations and corresponding discharge values from the database, different sampling frequencies were simulated and resulting SPM fluxes were then compared to reference fluxes derived from the complete database. If a deviation of simulated flux estimates from reference fluxes lower than +/-20% is accepted, the Garonne River (large plain river) must be sampled at least every 3 days (10 samples per month) and the Nivelle River every 7 h (approx. 100 samples per month). For the Garonne River this minimum sampling frequency is valid for all contrasted hydrologic years of the observation period. Below these minimum sampling frequencies, annual SPM flux estimates may greatly differ from reference fluxes (up to 200%) and there is high probability of systematic underestimation. Consequently, annual SPM flux estimates for the Garonne River derived from the empirical relation (SPM*-annual discharge) are likely to be more satisfactory (errors <30%) than estimates based on sampling frequencies lower than the minimum frequency. These findings underline the need of adapted sampling strategies for erosion assessment, reliable chemical (e.g. nutrients and pollutants) mass balances and characterisation of fluvial transport mechanisms in the world's contrasted watersheds.  相似文献   

12.
This study describes the modification of aerobic granules by grafting polyethylenimine (PEI) for simultaneous sorption and detoxification of Cr(VI). After modification, the uptake capacity of modified aerobic granules (MAG) showed about 401.5 mg/g at pH 5.5 and increased by 274% compared to the control. Adsorption experiments were carried out as a function of contact time, pH and concentration of Cr(VI). It was found that the equilibrium sorption can be attained within 3 h and the process obeys the Redlich-Peterson isotherm model. The adsorption process is a function of pH of the solution, with the greater adsorption at pH 5.2. The interaction characteristics between the Cr and MAG were elucidated by applying FTIR and XPS analyses. FTIR results showed that the -NH2 groups in the sorbent are involved in the adsorption process. XPS results verified the presence of Cr(III) on the MAG surface in the pH range 1.5-8.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption.  相似文献   

13.
Removal of Co2+ from aqueous solutions by hydroxyapatite   总被引:1,自引:0,他引:1  
A study on the removal of cobalt ions from aqueous solutions by synthetic hydroxyapatite was conducted in batch conditions. The influence of different sorption parameters, such as: initial metal concentration, equilibration time, solution pH and presence of EDTA on the amount of Co(2+) sorbed was studied and discussed. The sorption process followed pseudo-second-order kinetics with necessary time of 24 h to reach equilibrium. Cobalt uptake was quantitatively evaluated using the Langmuir and Dubinin-Kaganer-Radushkevich (DKR) model. The Langmuir adsorption isotherm constant corresponding to adsorption capacity, Xm, was found to be 20.92 mg/g. Sorption of Co(2+) is constant in the initial pH range 4-8, because HAP surface buffers these solutions to the constant final pH value of 5.1. In the presence of EDTA, sorption of Co(2+) decreases due to formation of complex with lower sorption affinities. Cobalt desorption depends on the composition of the extracting solution. The desorbed amount of cobalt decreased continuously with increasing pH, and increased with increasing Ca(2+) concentration in leaching solution.  相似文献   

14.
Daily measurements of water discharges and suspended particulate matter (SPM) concentrations and monthly sampling for trace element analyses (Cd, Zn, Pb and Cu) were conducted from 1999 to 2002 on the Garonne, Dordogne and Isle Rivers, the three main tributaries of the Gironde Estuary, France. Dissolved and particulate Cd, Zn, Pb and Cu concentrations in the Isle River were generally higher than those in the Garonne River, despite the known historical polymetallic pollution affecting the Lot-Garonne River system. Even if the relatively high dissolved metal concentrations in the Isle River may be of importance for the local ecosystem, metal inputs into the estuarine and coastal zones are mainly controlled by fluvial transport via the Garonne River. Characteristic element concentration ratios (e.g., Zn/Pb) in SPM and stream sediments from the Dordogne and Isle Rivers suggest two different metal source areas with distinct geochemical signals. Low Zn/Pb ratios (<8) and low Cu/Pb ratios (<0.8) have been attributed to upstream source zones in the Massif Central, featuring various ore deposits and mining areas. High Zn/Pb ratios were assigned to downstream sources (e.g., vineyards), partly explaining high Zn and Cu concentrations and high Cu/Pb ratios (>0.8) in SPM. Although SPM derived from the upstream parts of the studied watersheds may greatly contribute to the observed fluvial metal transport (up to approximately 80% for Pb), the results suggest that intensive agriculture also considerably influences gross metal (e.g., Zn, Cu) fluxes into the Gironde Estuary. Relative contributions of upstream and downstream source zones may vary from one year to another reflecting hydrological variations and/or reservoir management. Monitoring fluxes and identifying distinct geochemical signals from source areas in heterogeneous watersheds may greatly improve understanding of contaminant transport to the coast.  相似文献   

15.
Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.  相似文献   

16.
Zheng S  Yang Z  Jo DH  Park YH 《Water research》2004,38(9):2314-2321
The equilibrium and kinetics of chlorophenol (CP) sorption by chitosan, poly D-glucosamine, were studied under simulated groundwater conditions. Lower temperature, from 25 degrees C to 15 degrees C and then 5 degrees C, markedly decreased the adsorption rates by a factor of 30-53% and 7-22%. Comparison between two types of chitosan, flakes and highly swollen beads, demonstrated that the maximum pentachlorophenol (PCP) uptake capacities in Langmuir and Freundlich models depend on the specific surface area of the particle. Low temperature (5 degrees C) significantly increased the PCP uptake capacity in comparison to higher temperatures (15 degrees C and 25 degrees C). PCP uptake capacity was halved at pH levels higher than 6.5, and NaCl concentrations greater than 1% blocked PCP sorption almost completely. Of five kinds of chlorophenols, i.e. 2,4,6-trichlorophenol (2,4,6-TCP), 3,4-dichlorophenol (3,4-DCP), 2,3-dichlorophenol (2,3-DCP), 2,6-dichlorophenol (2,6-DCP), 3-monochlorophenol (3-MCP), TCP had the maximum sorption efficiency on flake-type chitosan, followed by DCPs, and finally MCP (the three kinds of DCP, with the same elemental compositions, achieved similar sorption performances).  相似文献   

17.
The partitioning behaviour of the organic biocides, Irgarol 1051 and diuron and two inorganic biocides (copper and zinc) was investigated using six sediments of differing physico-chemical properties collected from unimpacted sites along the south coast of England. The kinetics of sorption and equilibrium partitioning between the sediments and seawater were investigated over a period of 20 days. Resulting organic carbon/water partition coefficients (log Koc) were related to suspended sediment concentration and ranged from 2.28 to 5.20 for diuron; and from 2.41 to 4.89 for Irgarol 1051. Sediment/water partition coefficients (log Kp) for copper and zinc varied from 2.46 to 5.08 l/kg and from 2.49 to 4.97 l/kg, respectively. Kinetic data indicated that there were significant interactions between the dissolved and particulate phases at the start of the experiments, just after mixing. This is thought to be a result of redistribution of organic carbon between the two phases.  相似文献   

18.
Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).  相似文献   

19.
Yang SF  Lin CF  Wu CJ  Ng KK  Lin AY  Hong PK 《Water research》2012,46(4):1301-1308
The sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25 ± 0.5 °C, pH 7.0, and dissolved oxygen of 3.0 ± 0.1 mg/L in a batch reactor over different periods of 2 d and 14 d. All sulfonamides were removed completely over 11-13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 μg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L. The measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 μg/L.  相似文献   

20.
Natural Jordanian sorbent (consisting of primary minerals, i.e., quartz and aluminosilicates and secondary minerals, i.e., calcite and dolomite) was shown to be effective for removing Zn(II), Pb(II) and Co(II) from aqueous solution. The major mineral constitutions of the sorbent are calcite and quartz. Dolomite was present as minor mineral and palygorskite was present as trace mineral. The sorbent has microporous structure with a modest surface area of 14.4 m(2)g(-1). pH(zpc) (pH of zero point charge) of the sorbent was estimated by alkaline-titration methods and a value of 9.5 was obtained. The sorption capacities of the metals were: 2.860, 0.320, 0.076 mmol cation g(-1) for Zn(II), Pb(II) and Co(II) at pH 6.5, 4.5 and 7.0, respectively. The shape of the experimental isotherm of Zn(II) was of a "L2" type, while that of Pb(II) and Co(II) was of a "L1" type according to Giles classification for isotherms. Sorption data of metals were described by Langmuir and Freundlich models over the entire concentration range. It was found that the mechanism of metal sorption was mainly due to precipitation of metal carbonate complexes. The overall sorption capacity decreased after acid treatment, as this decreased the extent of precipitation on calcite and dolomite. The effect of Zn(II) ions concentration on sorption kinetics was investigated. Kinetic data were accurately fitted to pseudo-first order and external diffusion models which indicated that sorption of Zn(II) occurred on the exterior surface of the sorbent and the contribution of internal diffusion mechanism was insignificant. Furthermore, the sorption rate of Zn(II) was found to be slow, where only 10-20% of the maximum capacity was utilized in the first 30 min of interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号