首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the electrochemical degradation of chlorobenzene (CB) was investigated on boron-doped diamond (BDD) and platinum (Pt) anodes, and the degradation kinetics on these two electrodes was compared. Compared with the total mineralization with a total organic carbon (TOC) removal of 85.2% in 6 h on Pt electrode, the TOC removal reached 94.3% on BDD electrode under the same operate condition. Accordingly, the mineralization current efficiency (MCE) during the mineralization on BDD electrode was higher than that on the Pt electrode. Besides TOC, the conversion of CB, the productions and decay of intermediates were also monitored. Kinetic study indicated that the decay of CB on BDD and Pt electrodes were both pseudo-first-order reactions, and the reaction rate constant (ks) on BDD electrode was higher than that on Pt electrode. The different reaction mechanisms on the two electrodes were investigated by the variation of intermediates concentrations. Two different reaction pathways for the degradation of CB on BDD electrode and Pt electrode involving all these intermediates were proposed.  相似文献   

2.
掺硼金刚石薄膜的电化学性能   总被引:3,自引:1,他引:2  
利用循环伏安法,通过对比掺硼金刚石薄膜电极和铂/金刚石电极分别作为工作电极时的循环伏安曲线,分析了两种电极表现出的电化学性能差别,并利用能级理论进行了机理探讨。结果表明掺硼金刚石薄膜电极具有宽的电化学窗口(宽度约为3V)、良好的化学稳定性和极低的背景电流(接近0),是一种较有潜力的电化学电极材料。  相似文献   

3.
Electrochemical oxidation of oxalic acid has been investigated at bare, highly boron-doped diamond electrodes. Cyclic voltammetry and flow injection analysis with amperometric detection were used to study the electrochemical reaction. Hydrogen-terminated diamonds exhibited well-defined peaks of oxalic acid oxidation in a wide pH range. A good linear response was observed for a concentration range from 50 nM to 10 microM, with an estimated detection limit of approximately 0.5 nM (S/N = 3). In contrast, oxygen-terminated diamonds showed no response for oxalic acid oxidation inside the potential window, indicating that surface termination contributed highly to the control of the oxidation reaction. An investigation with glassy carbon electrodes was conducted to confirm the surface termination effect on oxalic acid oxidation. Although a hydrogen-terminated glassy carbon electrode showed an enhancement of signal-to-background ratio in comparison with untreated glassy carbon, less stability of the current responses was observed than that at hydrogen-terminated diamond.  相似文献   

4.
The electrochemistry of histamine and serotonin in neutral aqueous media (pH 7.2) was investigated using polycrystalline, boron-doped diamond thin-film electrodes. Cyclic voltammetry, hydrodynamic voltammetry, and flow injection analysis (FIA) with amperometric detection were used to study the oxidation reactions. Comparison experiments were carried out using polished glassy carbon (GC) electrodes. At diamond electrodes, highly reproducible and well-defined cyclic voltammograms were obtained for histamine with a peak potential at 1.40 V vs SCE. The voltammetric signal-to-background ratios obtained at diamond were 1 order of magnitude higher than those obtained for GC electrodes at and above 100 microM analyte concentrations. A linear dynamic range of 3-4 orders of magnitude and a detection limit of 1 microM were observed in the voltammetric measurements. Well-defined sweep rate-dependent voltammograms were also obtained for 5-hydroxytryptamine (5-HT). The characteristics of the voltammogram indicated lack of adsorption of its oxidation products on the surface. No fouling or deactivation of the electrode was observed within the experimental time of several hours. A detection limit of 0.5 microM (signal-to-noise ratio 13.8) for histamine was obtained by use of the FIA technique with a diamond electrode. A remarkably low detection limit (10 nM) was obtained for 5-HT on diamond by the same method. Diamond electrodes exhibited a linear dynamic range from 10 nM to 100 microM for 5-HT determination and a range of 0.5-100 microM for histamine determination. The FIA response was very reproducible from film to film, and the response variability was below 7% at the actual detection limits.  相似文献   

5.
In recent years, electrochemical technologies have been widely used to remove contaminants at lab-scale and semi-pilot scale. Boron-doped diamond (BDD) electrodes have been considered as efficient materials for the abatement of persistent organic pollutants owing to their outstanding properties, such as rapid rates of electron-transfer for soluble redox systems, wide electrochemical potential window for water discharge reactions in aqueous and non-aqueous electrolytes, and high stability. Similar to other applications of electrochemical technology, wastes display medium to high ionic conductivity. Therefore, one of the applications highlighted for the electrolysis with these new electrodes is the treatment of soil-washing fluids, because in the polluted streams, washing of polluted soils provides a suitable conductivity to the effluent. In this context, this review summarizes the application of conductive diamond anodes for the electrochemical treatment of soil-washing effluents contaminated with different persistent organic pollutant such as pesticides, hydrocarbons, dyes, and organochlorine compounds, in single anodic oxidation processes and in other more complex processes such as electro-Fenton, photoelectrolysis, or sonoelectrolysis. Finally, the challenges and future research directions of electrochemical technology are discussed and outlined at pilot and prototype scale.  相似文献   

6.
Iridium-modified, boron-doped diamond electrodes fabricated by an ion implantation method have been developed for electrochemical detection of arsenite (As(III)). Ir+ ions were implanted with an energy of 800 keV and a dose of 10(15) ion cm(-2). An annealing treatment at 850 degrees C for 45 min in H2 plasma (80 Torr) was required to rearrange metastable diamond produced by an implantation process. Characterization was investigated by SEM, AFM, Raman, and X-ray photoelectron spectroscopy. Cyclic voltammetry and flow injection analysis with amperometric detection were used to study the electrochemical reaction. The electrodes exhibited high catalytic activity toward As(III) oxidation with the detection limit (S/N = 3), sensitivity, and linearity of 20 nM (1.5 ppb), 93 nA microM(-1) cm(-2), and 0.999, respectively. The precision for 10 replicate determinations of 50 microM As(III) was 4.56% relative standard deviation. The advantageous properties of the electrodes were its inherent stability with a very low background current. The electrode was applicable for analysis of spiked arsenic in tap water containing a significant amount of various ion elements. The results indicate that the metal-implanted method could be promising for controlling the electrochemical properties of diamond electrodes.  相似文献   

7.
The degradation of diphenylamine (DPA) in aqueous solution by persulfate is investigated. Effects of pH, persulfate concentration, ionic strength, temperature and catalytic ions Fe(3+) and Ag(+) on the degradation efficiency of DPA by persulfate are examined in batch experiments. The degradation of DPA by persulfate is found to follow the pseudo-first-order kinetic model. Increasing the reaction temperature or persulfate concentration may significantly accelerate the DPA degradation. Fe(3+) and Ag(+) ions can enhance the degradation of DPA, and Ag(+) ion is more efficient than Fe(3+) ion. However, the increase of either the pH value or ionic strength will decrease the rate of DPA degradation. N-Phenyl-4-quinoneimine, N-carboxyl-4-quinoneimine, 4-quinoneimine and oxalic acid are identified as the major intermediates of DPA degradation, and a primary pathway for the degradation of DPA is proposed. The degradation of DPA in surface water, groundwater and seawater is also tested by persulfate, and more than 90% of DPA can be degraded at room temperature in 45min at an initial concentration of 20mgL(-1).  相似文献   

8.
The electrochemical degradation of chloride-mediated and chloride-free dye wastewaters was investigated on a boron-doped diamond (BDD) electrode in comparison with that on a dimensionally stable anode (DSA), and the applicability of BDD electrode to the degradation of these two kinds of wastewaters was explored. In chloride-free wastewater, the electrochemical degradation efficiency of dye on BDD electrode was much higher than that on DSA, with a chemical oxygen demand (COD) removal of 100% and 26% for BDD and DSA, respectively. In chloride-mediated dye wastewater, COD removal was faster than that in chloride-free wastewater on both BDD and DSA electrodes with COD removal efficiencies higher than 95%, whereas the rate of COD removal on DSA was faster than that on BDD electrode. The investigation indicates that DSA is more suitable than BDD electrode in degradation of originally chloride contained dye wastewaters for the sake of energy and time saving. However, for chloride-free dye wastewaters, with the aim of environmental protection, BDD electrode is more appropriate to realize complete mineralization. At the same time, the secondary pollution can be avoided.  相似文献   

9.
Electrochemical oxidation of 4-chloroguaiacol (4-CG) at Nb/PbO(2) anodes was studied under different experimental conditions such as initial concentration of substrate, electrolysis time, temperature and pH. We measured the concentrations of 4-chlorocatechol (4-CC), 2-methoxyhydroquinone (2-MHQ), maleic acid (MA) and carbon dioxide as the main products. Black solid particles consisting mainly of polymers were formed during electrolysis. A mechanism of electrochemical oxidation of 4-CG was investigated. The oxidation of 4-CG can generally be described by simple pseudo first-order kinetics. The degradation of 4-CG was favoured at high temperature and lower initial concentration of 4-CG and low solution pH. However, the increase of temperature has not a significant effect on the mineralization of carboxylic acids. Moreover, these products required long electrolysis time.  相似文献   

10.
Electrochemical oxidation of O-Toluidine (OT) was studied by galvanostatic electrolysis using lead dioxide (PbO2) and boron-doped diamond (BDD) as anodes. The influence of operating parameters, such as current density, initial concentration of OT and temperature was investigated. Measurements of chemical oxygen demand were used to follow the oxidation. The experimental data indicated that on PbO2 and BDD anodes, OT oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high temperature. Furthermore, BDD anodes offer significant advantages over PbO2 in terms of current efficiency and oxidation rate.  相似文献   

11.
Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm−1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co–C–B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.  相似文献   

12.
金刚石虽然具有极为优异的性能,如具有很大的能隙,高的电子迁移率、空穴迁移率和高热导率,以及负的电子亲和势,但要将它用于半导体材料时还不能直接使用,必须要先进行金刚石的P型和n型掺杂。因此,研究金刚石的P型和n型掺杂具有很重要的现实意义。在金刚石薄膜中掺杂时,一般是掺入硼原子以实现P型掺杂,掺入氮原子或磷原子以实现n型掺杂。然而,由于N和P在金刚石中的施主能级太深,现在n型掺杂金刚石薄膜制备尚不成功,这是金刚石实用化的障碍。本文介绍了金刚石膜掺硼目的、方法和制备,总结了掺硼金刚石膜在微电子、电化学、光电子、工具等领域应用状况以及存在问题。  相似文献   

13.
Abstract

Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm?1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co–C–B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.  相似文献   

14.
Weng J  Zhang J  Li H  Sun L  Lin C  Zhang Q 《Analytical chemistry》2008,80(18):7075-7083
An electrochemical biosensor using a boron-doped diamond (BDD) electrode is described for differentiating between gene sequences according to DNA hybridization events using an ac impedimetric approach. BDD electrodes were dipped into a 1% solution of polyethylenimine (PEI) to adsorb a thin layer of positively charged PEI on the surface of BDD, then PEI-modified BDD electrodes were used to immobilize negatively charged single-stranded PCR fragments from Exon 7 of human p53 gene. Alternating current impedimetric measurements were first performed on these systems in phosphate buffered saline (PBS) and then upon exposure to single-stranded DNA (ssDNA). When the ssDNA-immobilized BDD electrode and solution ssDNA were completely complementary, a large drop in impedance was measured. Complementary DNA could be clearly detected at concentrations down to 10 (-19) g mL (-1) at a fixed frequency (10 Hz). Higher concentrations of DNA gave faster hybridization with saturation occurring at levels above 1.0 pg mL (-1.) Responses were much lower upon exposure to noncDNA, even at higher concentrations. The results show it is possible to directly detect target DNA at a fixed frequency and without additional labeling.  相似文献   

15.
We have studied high-pressure, high-temperature processing (7.0 GPa, 2000–2100°C) of low-nitrogen boron-doped synthetic diamonds grown in the Fe-Ni-C system (5.5–6.0 GPa, 1350–1450°C) with boron and titanium additions. The results indicate that, during the growth of low-nitrogen boron-doped diamonds, there is a competition between different acceptors (boron and nickel). The system of point defects and their distribution over the crystal are not influenced by the processing; the uniformity of coloration in natural diamonds is governed by the prevalence of octahedron growth sectors.  相似文献   

16.
For a heavily boron-doped diamond (BDD) film, temperature variations of the electrical conductivity σ and magnetic susceptibility χ are reported. The room temperature σ 143 (Ω-cm)−1 corresponds to a carrier concentration 103 ppm, and its temperature variation yields an activation energy Ea 28 meV from 140 to 300 K and Ea0.88 meV from 40 to 80 K. It is argued that larger boron doping leads to lower magnitudes of Ea. The χ vs. T data (1.8–350 K) fits the Curie–Weiss law, with the concentration of paramagnetic species 120 ppm and a diamagnetic susceptibility −0.4×10−6 emu/g Oe. The results obtained from the measurements of σ and χ are discussed and compared.  相似文献   

17.
Anodically pretreated diamond electrodes have been used for the detection of chlorophenols (CPs) in environmental water samples after high-performance liquid chromatographic (HPLC) separation. The anodization of as-deposited boron-doped polycrystalline diamond thin-film electrodes has enabled the stable determination of phenols over a wide concentration range. Prior to the HPLC analysis, a comparative study with ordinary glassy carbon, as-deposited diamond, and anodized diamond was made to examine the oxidative behavior of phenols by cyclic voltammety and flow injection analysis with amperometric detection. At anodized diamond electrodes, reproducible, well-defined cyclic voltammograms were obtained even at high CP concentration (5 mM), due to a low proclivity for adsorption of the oxidation products on the surface. In addition, after prolonged use, the partially deactivated diamond could be reactivated on line by applying a highly anodic potential (2.64 Vvs SCE) for 4 min, which enabled the destruction of the electrodeposited polymer deposits. Hydroxyl radicals produced by the high applied potential, in which oxygen evolution occurs, are believed to be responsible for the oxidation of the passivating layer on the surface. When coupled with flow injection analysis (FIA), anodized diamond exhibited excellent stability, with a response variability of 2.3% (n = 100), for the oxidation of a high concentration (5 mM) of chlorophenol. In contrast, glassy carbon exhibited a response variability of 39.1%. After 100 injections, the relative peak intensity, for diamond decreased by 10%, while a drastic decrease of 70% was observed for glassy carbon. The detection limit obtained in the FIA mode for 2,4-dichlorophenol was found to be 20 nM (S/N = 3), with a linear dynamic range up to 100 microM. By coupling with the column-switching technique, which enabled on-line preconcentration (50 times), the detection limit was lowered to 0.4 nM (S/N = 3). By use of this technique, anodized diamond electrodes were demonstrated for the analysis of CPs in drainwater that was condensed from the flue gas of waste incinerators.  相似文献   

18.
Planar electrochemical microcells were micromachined in a microcrystalline boron-doped diamond (BDD) thin layer using a femtosecond laser. The electrochemical performances of the new laser-machined BDD microcell were assessed by differential pulse anodic stripping voltammetry (DPASV) determinations, at the nanomolar level, of the four heavy metal ions of the European Water Framework Directive (WFD): Cd(II), Ni(II), Pb(II), Hg(II). The results are compared with those of previously published BDD electrodes. The calculated detection limits are 0.4, 6.8, 5.5, and 2.3 nM, and the linearities go up to 35, 97, 48, and 5 nM for, respectively, Cd(II), Ni(II) Pb(II), and Hg(II). The detection limits meet with the environmental quality standard of the WFD for three of the four metals. It was shown that the four heavy metals could be detected simultaneously in the concentration ratio usually measured in sewage or runoff waters.  相似文献   

19.
俞琳  刘东红  胡连军  戴瑛  龙闰  闫翠霞 《功能材料》2005,36(12):1837-1838
室温下缺少浅施主中心,已经成为金刚石材料制造电子器件的主要障碍之一。最近报道显示硼掺杂p型同质外延金刚石暴露在氘离子束中能形成浅施主态的n型电导,这是在外延金刚石材料中首次测出的浅施主能级。本文分析研究了目前p型金刚石出现导电类型转换这一新现象的最新研究进展。  相似文献   

20.
Electro-catalytic degradation of phenol on several metal-oxide anodes   总被引:1,自引:0,他引:1  
Three kinds of Ti-based multilayer metal-oxide electrode, including Ti/SnO(2)+Sb(2)O(3)/PbO(2), Ti/SnO(2)+Sb(2)O(3)/MnO(x) and Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2) electrodes, were prepared by thermal decomposition, and SnO(2)+Sb(2)O(3) coatings were produced with a polymeric precursor method (PPM). The conversion of phenol was carried out with these electrodes as anodes under galvanostatic control. Samples during the electrolyses were characterized with UV-vis spectra and chromatography, and chemical oxygen demand (COD) and instantaneous current efficiency (ICE) for phenol degradation were also determined. The results show that phenol can be oxidized and degraded for all of the three anodes, and the oxidation reactions of phenol follow first-order kinetics, but there are considerable differences in the effectiveness and performance of electro-catalytic degradation. Phenol can be degraded relatively fast on the Ti/SnO(2)+Sb(2)O(3)/PbO(2) anode and the degradation rate of phenol is slower with the Ti/SnO(2)+Sb(2)O(3)/MnO(x) electrode, and the slowest with the Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2) electrode, whose apparent rate constants are 2.49 x 10(-2), 1.42 x 10(-2) and 9.76 x 10(-3) min(-1), respectively. The rates of electro-catalytic degradation relate to oxygen evolution potential, and the higher the oxygen evolution potential, the better the performance of electro-catalytic degradation. The potential for oxygen evolution at the Ti/SnO(2)+Sb(2)O(3)/PbO(2) anode is highest, then Ti/SnO(2)+Sb(2)O(3)/MnO(x), following Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2). The accelerated life tests at 60 degrees C and in 1.0 mol L(-1) aqueous H(2)SO(4) with an anodic current density of 4.0 Acm(-2) show that the service life is prolonged when the SnO(2)+Sb(2)O(3) interlayer coating are inserted between Ti substrate and active layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号