首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, an efficient sleep spindle detection algorithm based on decision tree is proposed. After analyzing the EEG waveform, the decision algorithm determines the exact location of sleep spindle by evaluating the outputs of three different methods namely: Short Time Fourier Transform (STFT), Multiple Signal Classification (MUSIC) algorithm and Teager Energy Operator (TEO).The EEG records collected from patients used in this study have been recorded at the Sleep Research Center in Department of Psychiatry of Gülhane Military Medicine Academy. The obtained results are in agreement with the visual analysis of EEG evaluated by expert physicians. The method is applied to 16 distinct patients, 420,570 minutes long EEG records and the performance of the algorithm was assessed for the sleep spindles detection with 96.17% sensitivity and 95.54% specificity. As a result, it is found that the proposed sleep spindle detection algorithm is an efficient method to detect sleep spindles on EEG records.  相似文献   

2.
Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. This paper deals with a novel method of analysis of EEG signals using wavelet transform, and classification using ANN. EEG signals were decomposed into the frequency sub-bands using wavelet transform and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. Then these statistical features were used as an input to an ANN with three discrete outputs: alert, drowsy and sleep. The error back-propagation neural network is selected as a classifier to discriminate the alertness level of a subject. EEG signals were obtained from 30 healthy subjects. The group consisted of 14 females and 16 males with ages ranging from 18 to 65 years and a mean age of 33.5 years, and a Body Mass Index (BMI) of 32.4±7.3 kg/m2. Alertness level and classification properties of ANN were tested using the data recorded in 12 healthy subjects, whereby the EEG recordings were not used to train the ANN. The statistics were used as a measure of potential applicability of the ANN. The accuracy of the ANN was 95±3% alert, 93±4% drowsy and 92±5% sleep.  相似文献   

3.
Obstructive sleep apnea syndrome (OSAS) is a situation where repeatedly upper airway stops off while the respiratory effort continues during sleep at least for 10 s. Apart from polysomnography, many researchers have concentrated on exploring alternative methods for OSAS detection. However, not much work has been done on using non-Gaussian and nonlinear behavior of the electroencephalogram (EEG) signals. Bispectral analysis is an advanced signal processing technique particularly used for exhibiting quadratic phase-coupling that may arise between signal components with different frequencies. From this perspective, in this study, a new technique for recognizing patients with OSAS was introduced using bispectral characteristics of EEG signal and an artificial neural network (ANN). The amount of Quadratic phase coupling (QPC) in each subband of EEG (namely; delta, theta, alpha, beta and gamma) was calculated over bispectral density of EEG. Then, these QPCs were fed to the input of the designed ANN. The neural network was configured with two outputs: one for OSAS and one for estimation of normal situation. With this technique a global accuracy of 96.15% was achieved. The proposed technique could be used in designing automatic OSAS identification systems which will improve medical service.  相似文献   

4.
We developed a new method for estimation of vigilance level by using both EEG and EMG signals recorded during transition from wakefulness to sleep. Previous studies used only EEG signals for estimating the vigilance levels. In this study, it was aimed to estimate vigilance level by using both EEG and EMG signals for increasing the accuracy of the estimation rate. In our work, EEG and EMG signals were obtained from 30 subjects. In data preparation stage, EEG signals were separated to its subbands using wavelet transform for efficient discrimination, and chin EMG was used to verify and eliminate the movement artifacts. The changes in EEG and EMG were diagnosed while transition from wakefulness to sleep by using developed artificial neural network (ANN). Training and testing data sets consist of the subbanded components of EEG and power density of EMG signals were applied to the ANN for training and testing the system which gives three situations for the vigilance level of the subject: awake, drowsy, and sleep. The accuracy of estimation was about 98–99% while the accuracy of the previous study, which uses only EEG, was 95–96%.  相似文献   

5.
The electroencephalographic (EEG) features of post traumatic epilepsy (PTE) are analyzed in the paper. The proposed method allows detection and classification of sleep spindles and epilepsy seizures. The experiments were conducted on a laboratory rats before and after traumatic brain inquiry (TBI). In the introduction, the details of the experiment along with the information about manual markup are provided. In the first part, the new method of sleep spindles and epilepsy seizures detection is described. The method is based on the analysis of the wavelet spectrogram extrema. Moreover, the described procedure of background extraction and ridge segmentation helps to classify signals as epilepsy seizures and sleep spindles. In the second part, the information about the clustering is given. k-Means clustering of seizures and spindles was performed based on signals power and frequency. The results of the clustering, along with the research of TBI effect on the EEG, are provided in the third part. It was shown that PTE may be considered as the cause of the frequency variance among clusters of sleep spindles and epilepsy seizures.  相似文献   

6.
Several studies have been conducted for automatic classification of sleep stages to ease time-consuming manual scoring process that can involve a high degree of experience and subjectivity. But none of them has found a practical usage in medical area so far because of their under acceptable success rates. In this study, a different classification scheme is proposed to increase the success rate in automatic sleep stage scoring in which sleep stages were classified as Awake, Non-REM1, Non-REM2, Non-REM3 and REM stages. Using EEG, EMG and EOG recordings of five healthy subjects, a modified version of sequential feature selection method was applied to the sleep epochs in class by class basis and different artificial neural network (ANN) architectures were trained for each class. That is to say, sleep stages were classified with five ANN architectures each of which uses different features and different network parameters for classification. The highest classification accuracy was obtained for REM sleep as 95.13 % in addition to the lowest classification accuracy of 86.42 % for Non-REM3 sleep. The overall accuracy, on the other hand, was recorded as 90.93 %, which is a comparatively good result when the other studies using all stages are taken into account.  相似文献   

7.
In this article we present an application of data mining to the medical domain sleep research, an approach for automatic sleep stage scoring and apnea-hypopnea detection. By several combined techniques (Fourier and wavelet transform, derivative dynamic time warping, and waveform recognition), our approach extracts meaningful features (frequencies and special patterns like k-complexes and sleep spindles) from physiological recordings containing EEG, ECG, EOG and EMG data. Based on these pieces of information, an ensemble of decision trees is constructed using the principle of bagging, which classifies sleep epochs in their sleep stages according to the rules by Rechtschaffen and Kales and annotates occurrences of apnea-hypopnea (total or partial cessation of respiration). After that, casebased reasoning is applied in order to improve quality. We tested and evaluated our approach on several large public databases from PhysioBank, which showed an overall accuracy of 95.2% for sleep stage scoring and 94.5% for classifying minutes as apneic or non-apneic.  相似文献   

8.
针对现阶段深度睡眠分期模型存在的梯度消失、对时序信息学习能力较弱等问题,提出一种基于双向长短时记忆卷积网络与注意力机制的自动睡眠分期模型。将少样本类别的睡眠脑电数据通过过采样方式进行数据增强后,利用带残差块的卷积神经网络学习数据特征表示,再通过带注意力层的双向长短时记忆网络挖掘深层时序信息,使用Softmax层实现睡眠分期的自动判别。实验使用Sleep-EDF数据集中19晚单通道脑电信号对模型进行交叉验证,取得了较高的分类准确率和宏平均F1值,优于对比方法。该方法能够有效缓解睡眠分期判别中少数类分类性能较低的问题,并提高了深度睡眠分期模型的整体分类性能。  相似文献   

9.
睡眠分期是睡眠数据分析的基础,针对目前睡眠分期存在的依赖人工提取、人工判别效率低、自动睡眠分期准确率不高等问题,本文研究模型是基于卷积神经网络和双向长短时记忆神经网络2个深度学习神经网络相结合的,利用脑电信号来进行自动睡眠分期的模型方法.算法能提取得到原始脑电信号的梅尔频谱,利用卷积神经网络和双向长短时记忆神经网络进行...  相似文献   

10.
当代社会睡眠问题日益突出,及时检测评估睡眠质量有助于诊断睡眠疾病.针对目前市面上睡眠监测类产品发展参差不齐的现状,本文搭建了一个基于双通道脑电信号的在线实时睡眠分期系统,利用第三方接口脑环获取脑电数据,结合CNN-BiLSTM神经网络模型,在PC电脑端实现了在线的实时睡眠分期与音乐调控功能.系统使用基于卷积神经网络CNN和双向长短时记忆神经网络BiLSTM相结合的算法模型对脑电信号进行自动特征提取,CNN能够提取高阶特征, BiLSTM可以捕捉睡眠数据前后的依赖性和关联性,睡眠分期准确率更高.实验结果表明,本文算法模型在Sleep-EDF公共数据集上的四分类任务中取得了92.33%的分期准确率,其Kappa系数为0.84,本系统的实时睡眠分期功能在自采集睡眠数据分期实验中取得79.17%的分期准确率,其Kappa系数为0.70.相比其他睡眠监测类产品,本系统睡眠分期准确率更高,应用场景更多样,实时性和可靠性强,并且可以根据分期结果对用户进行相应的音乐调控,改善用户睡眠质量.  相似文献   

11.
Many researchers use electroencephalograms (EEGs) to study brain activity in the context of seizures, epilepsy, and lie detection. It is desirable to eliminate EEG artifacts to improve signal collection. In this paper, we propose an emotion recognition system for human brain signals using EEG signals. We measure EEG signals relating to emotion, divide them into five frequency ranges on the basis of power spectrum density, and eliminate low frequencies from 0 to 4 Hz to eliminate EEG artifacts. The resulting calculations of the frequency ranges are based on the percentage of the selected range relative to the total range. The calculated values are then compared to standard values from a Bayesian network, calculated from databases. Finally, we show the emotion results as a human face avatar.  相似文献   

12.
Electroencephalogram (EEG) is able to indicate states of mental activity ranging from concentrated cognitive efforts to sleepiness. Such mental activity can be reflected by EEG energy. In particular, intrusion of EEG theta wave activity into the beta activity of active wakefulness has been interpreted as ensuing sleepiness. Pupil behavior can also provide information regarding alertness. This paper develops an innovative signal classification method that is capable of differentiating subjects with sleep disorders which cause excessive daytime sleepiness (EDS) from normal control subjects who do not have a sleep disorder based on EEG and pupil size. Subjects with sleep disorders include persons with untreated obstructive sleep apnea (OSA) and narcolepsy. The Yoss pupil staging rule is used to scale levels of wakefulness and at the same time theta energy ratios are calculated from the same 2-s sliding windows by Fourier or wavelet transforms. Then, an artificial neural network (NN) of modified adaptive resonance theory (ART2) is utilized to identify the two groups within a combined group of subjects including those with OSA and healthy controls. This grouping from the NN is then compared with the actual diagnostic classification of subjects as OSA or controls and is found to be 91% accurate in differentiating between the two groups. The same algorithm results in 90% correct differentiation between narcoleptic and control subjects.  相似文献   

13.

The visual sleep stages scoring by human experts is the current gold standard for sleep analysis. However, this method is tedious, time-consuming, prone to human errors, and unable to detect microstructure of sleep such as cyclic alternating pattern (CAP) which is an important diagnostic factor for the detection of sleep disorders such as insomnia and obstructive sleep apnea (OSA). The CAP is only observed as subtle changes in the electroencephalogram (EEG) signals during non-rapid eye movement (NREM) sleep, making it very difficult for human experts to discern. Hence, it is important to have an automated system developed using artificial intelligence for accurate and robust detection of CAP and sleep stages classification. In this study, a deep learning model based on 1-dimensional convolutional neural network (1D-CNN) is proposed for CAP detection and homogenous 3-class sleep stages classification, namely wakefulness (W), rapid eye movement (REM) and NREM sleep. The proposed model is developed using standardized EEG recordings. Our developed CNN network achieved good model performance for 3-class sleep stages classification with a classification accuracy of 90.46%. Our proposed model also yielded a classification accuracy of 73.64% using balanced CAP dataset, and sensitivity of 92.06% with unbalanced CAP dataset. Our proposed model correctly identified majority of A-phases which comprised of only 12.6% in the unbalanced dataset. The performance of the developed prototype is ready to be tested with more data before clinical application.

  相似文献   

14.
用近似熵对睡眠脑电信号进行分期,由于睡眠Ⅲ期和Ⅳ期近似熵值非常接近,靠近似熵值无法区分,提出基于神经网络集成的睡眠脑电信号分期,采用BP神经网络为分类器,对用AR参数提取的睡眠脑电特征对睡眠Ⅲ期和Ⅳ期进行分期。为进一步提高BP神经网络性能,采用Bagging算法对BP神经网络分类器进行加权投票,实验表明,提出的方法具有很好的分期效果。  相似文献   

15.
现有癫痫发作预测方法存在精度较低、错误报警率较高、癫痫患者睡眠脑电特异性、致痫灶位置和类型不同导致脑电信号存在差异的问题.文中提出基于深度神经网络的个性化睡眠癫痫发作预测方法,帮助医生和患者采取及时有效的治疗措施,降低患者患并发症和猝死的概率.对原始脑电信号滤波和分段以去除噪声,保证短时间内触发警报,利用离散小波变换分解信号并提取统计特征表征脑电信号时频特征.再应用双向长短期记忆网络挖掘最具鉴别能力的特征并结合留一法分类,经过决策过程优化得到预测结果.在不同频带限制条件下的实验表明,与睡眠癫痫相关的δ频带信号是影响发作预测性能的重要因素.相比现有睡眠癫痫预测方法,文中方法性能较优.  相似文献   

16.
Epileptic EEG detection using neural networks and post-classification   总被引:1,自引:0,他引:1  
Electroencephalogram (EEG) has established itself as an important means of identifying and analyzing epileptic seizure activity in humans. In most cases, identification of the epileptic EEG signal is done manually by skilled professionals, who are small in number. In this paper, we try to automate the detection process. We use wavelet transform for feature extraction and obtain statistical parameters from the decomposed wavelet coefficients. A feed-forward backpropagating artificial neural network (ANN) is used for the classification. We use genetic algorithm for choosing the training set and also implement a post-classification stage using harmonic weights to increase the accuracy. Average specificity of 99.19%, sensitivity of 91.29% and selectivity of 91.14% are obtained.  相似文献   

17.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.  相似文献   

18.
Electroencephalogram (EEG) recordings often experience interference by different kinds of noise, including white, muscle and baseline, severely limiting its utility. Artificial neural networks (ANNs) are effective and powerful tools for removing interference from EEGs. Several methods have been developed, but ANNs appear to be the most effective for reducing muscle and baseline contamination, especially when the contamination is greater in amplitude than the brain signal. An ANN as a filter for EEG recordings is proposed in this paper, developing a novel framework for investigating and comparing the relative performance of an ANN incorporating real EEG recordings. This method is based on a growing ANN that optimized the number of nodes in the hidden layer and the coefficient matrices, which are optimized by the simultaneous perturbation method. The ANN improves the results obtained with the conventional EEG filtering techniques: wavelet, singular value decomposition, principal component analysis, adaptive filtering and independent components analysis. The system has been evaluated within a wide range of EEG signals. The present study introduces a new method of reducing all EEG interference signals in one step with low EEG distortion and high noise reduction.  相似文献   

19.
In this study, 5-s long sequences of full-spectrum electroencephalogram (EEG) recordings were used for classifying alert versus drowsy states in an arbitrary subject. EEG signals were obtained from 30 healthy subjects and the results were classified using a wavelet-based neural network. The wavelet-based neural network model, employing the multilayer perceptron (MLP), was used for the classification of EEG signals. A multilayer perceptron neural network (MLPNN) trained with the Levenberg–Marquardt algorithm was used to discriminate the alertness level of the subject. In order to determine the MLPNN inputs, spectral analysis of EEG signals was performed using the discrete wavelet transform (DWT) technique. The MLPNN was trained, cross-validated, and tested with training, cross-validation, and testing sets, respectively. The correct classification rate was 93.3% alert, 96.6% drowsy, and 90% sleep. The classification results showed that the MLPNN trained with the Levenberg–Marquardt algorithm was effective for discriminating the vigilance state of the subject.  相似文献   

20.
Sleep stage scoring is a challenging task. Most of existing sleep stage classification approaches rely on analysing electroencephalography (EEG) signals in time or frequency domain. A novel technique for EEG sleep stages classification is proposed in this paper. The statistical features and the similarities of complex networks are used to classify single channel EEG signals into six sleep stages. Firstly, each EEG segment of 30 s is divided into 75 sub-segments, and then different statistical features are extracted from each sub-segment. In this paper, feature extraction is important to reduce dimensionality of EEG data and the processing time in classification stage. Secondly, each vector of the extracted features, which represents one EEG segment, is transferred into a complex network. Thirdly, the similarity properties of the complex networks are extracted and classified into one of the six sleep stages using a k-means classifier. For further investigation, in the statistical features extraction phase two statistical features sets are tested and ranked based on the performance of the complex networks. To investigate the classification ability of complex networks combined with k-means, the extracted statistical features were also forwarded to a k-means and a support vector machine (SVM) for comparison. We also compare the proposed method with other existing methods in the literature. The experimental results show that the proposed method attains better classification results and a reasonable execution time compared with the SVM, k-means and the other existing methods. The research results in this paper indicate that the proposed method can assist neurologists and sleep specialists in diagnosing and monitoring sleep disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号