首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Organic Electronics》2007,8(6):662-672
A series of new poly(amine–amide–imide)s with pendent 4-methoxy-substituted triphenylamine (TPA) units having inherent viscosities of 0.35–0.45 dL/g were prepared from various aromatic bis(trimellitimide)s and the 4-methoxy-substituted triphenylamine-based aromatic diamine, 4,4′-diamino-4″-methoxytriphenylamine (I), by direct polycondensation. All the polymers are readily soluble in polar organic solvents. Flexible and amorphous films of these poly(amine–amide–imide)s could be obtained by solution-casting, and showed excellent thermal stability, 10% weight-loss temperatures in excess of 515 °C, and char yields at 800 °C in nitrogen higher than 58% associated with high glass-transition temperatures (297–305 °C). These polymers exhibited a maximum UV–vis absorption at 302–304 nm with fluorescence emission maxima around 360–376 nm in N-methyl-2-pyrrolidinone (NMP) solution. The hole-transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine–amide–imide) films cast onto an indium–tin oxide (ITO)-coated glass substrate exhibit a reversible oxidation at 0.79–0.80 V vs. Ag/AgCl in acetonitrile solution, and reveal good stability of electrochromic characteristics with a color change from yellow to green at applied potentials ranging from 0.00 to 0.95 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good green coloration efficiency (CE = 395 cm2/C) but also exhibited high contrast of optical transmittance change (ΔT%) up to 78% in 768 nm. After over 100 cyclic switches, the polymer films still exhibited stable electrochromic characteristics.  相似文献   

2.
《Organic Electronics》2014,15(3):798-808
A mixed lanthanide β-diketonate complex of molecular formula [Eu0.45Tb0.55(btfa)3(4,4′-bpy)(EtOH)] (btfa = 4,4,4–trifluoro–1–phenyl–1,3–butanedionate; 4,4′-bpy = 4,4′-dipyridyl; EtOH = ethanol) was synthesized and its structure was elucidated by single crystal X-ray diffraction. The temperature dependence of the complex emission intensity between 11 and 298 K is illustrated by the Commission Internacionale l’Éclairage (CIE) (x, y) color coordinates change within the orange-red region, from (0.521, 0.443) to (0.658, 0.335). The existence of Tb3+-to-Eu3+ energy transfer was observed at room temperature and as the complex presents a relatively high emission quantum yield (0.34 ± 0.03) it was doped in a 4,4′-bis(carbazol-9-yl)biphenyl (CBP) organic matrix to be used as emitting layer to fabricate a white organic light-emitting diode (WOLED). Continuous electroluminescence emission was obtained varying the applied bias voltage showing a wide emission band from 400 to 700 nm. The white emission results from a combined action between the Eu3+ and Tb3+ peaks from the mixed Eu3+/Tb3+ complex and the other organic layers forming the device. The intensity ratio of the peaks is determined by the layer thickness and by the bias voltage applied to the OLED, allowing us to obtain a color tunable light source.  相似文献   

3.
《Organic Electronics》2014,15(4):886-892
An inverted-type quantum-dot light-emitting-diode (QD LED), employing low-work function organic material polyethylenimine ethoxylated (PEIE) as electron injection layer, was fabricated by all solution processing method, excluding anode electrode. From transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies, it was confirmed that CdSe@ZnS QDs with 7 nm size were uniformly distributed as a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine (poly-TPD)] and [4,4′-N,N′-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental IV data.  相似文献   

4.
A heteroleptic polypyridyl ruthenium complex ‘cis-Ru(4,4′-bis(3,5-bis(5-hexylthiophen-2-yl)phenyl)-2,2′-bipyridine)(4,4′-dicarboxyl-2,2′-bipyridine) (NCS)2, MC102′, with a high molar extinction coefficient was synthesized and characterized with IR, 1H NMR, Mass, UV–Vis spectroscopy. The test cell DSSC devices constructed with 0.23 cm2 active area photo-electrode in combination with an electrolyte composed of 0.6 M dimethylpropyl-imidazolium iodide (DMPII), 0.05 M I2, and 0.1 M LiI in acetonitrile yielded solar to electric energy conversion efficiency (η) of 4.42% under Air Mass (AM) 1.5 sunlight, while the reference N719 sensitized solar cell fabricated and evaluated under similar conditions exhibited η-value of 5.84%.  相似文献   

5.
A series of derivatives based on annelated β-oligothiophenes were synthesized and characterized as active layer in organic field-effect transistors (OFETs). Highest field-effect mobility of 0.52 V?1 s?1 for 2,5-dibiphenyl-dithieno[2,3-b:3′,2′-d]thiophene (DBP-DTT), 2.2 cm2 V?1 s?1 for 2,5-distyryl-dithieno[2,3-b:3′,2′-d]thiophene (DEP-DTT), and 0.16 cm2 V?1 s?1 for 1,4-di[2-dithieno[2,3-b:3′,2′-d] thiophen-2-yl-vinyl]benzene (DDTT-EP) were obtained, while 2,5-diphenyl-dithieno [2,3-b:3′,2′-d]thiophene (DP-DTT) presents no field-effect behaviors. Their thermal, optical and electrochemical properties, topographical and X-ray diffraction patterns of films, and the single crystal structures were also investigated. With the end-capping groups changing in these materials, the intermolecular interactions could transform from S–S in DP-DTT to S–C in DBP-DTT, to S–π in DEP-DTT, and to the coexisting of S–S and S–π in DDTT-EP. According to the device performances and the results of transfer integral calculations, it was revealed that S–π intermolecular interaction benefits not only improving the mobility but also reducing the threshold voltage (VT), while S–S intermolecular interaction is not favorable for promoting the mobility.  相似文献   

6.
《Organic Electronics》2014,15(1):16-21
We demonstrate that direct charge transfer (CT) from trap states of host molecules to the p-dopant molecules raises the doping effect of organic semiconductors (OS). Electrons of the trap states in 4,4′-N,N′-dicarbazolyl-biphenyl (CBP) (EHOMO = 6.1 eV) are directly transferred to the p-dopant, 2,2′-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6-TCNNQ) (ELUMO = 5.4 eV). This doping process enhances the conductivity of doped OS by different ways from the ordinary doping mechanism of generating free hole carriers and filling trap states of doped OS. Trap density and trap energy are analysed by impedance spectroscopy and it is shown that the direct charge transfer from deep trap states of host to dopants enhances the hole mobility of doped OS and the IV characteristics of hole only devices.  相似文献   

7.
《Organic Electronics》2008,9(1):51-62
Surface energy of indium tin oxide (ITO) surfaces treated by different plasmas, including argon (Ar–P), hydrogen (H2–P), carbon tetrafluoride (CF4–P), and oxygen (O2–P), was measured and analyzed. The initial growth mode of hole transport layers (HTLs) was investigated by atomic force microscope observation of thermally deposited 2 nm thick N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) on the plasma treated ITO surfaces. The results show that different plasma treatments of ITO influence the growth of HTLs in significantly different ways through the modification of surface energy, especially the polar component. The O2–P and CF4–P were found to be most effective in enhancing surface polarity through decontamination and increased dipoles, leading to more uniform and denser nucleation of NPB on the treated ITO surfaces. It was further found that increased density of nucleation sites resulted in a decreased driving voltage of OLEDs. Under the same fabricating conditions, a lowest driving voltage of 4.1 V was measured at a luminance of 200 cd/m2 for the samples treated in CF4–P, followed by the samples treated in O2–P (5.6 V), Ar–P (6.4 V), as-clean (7.0 V) and H2–P (7.2 V) plasma, respectively. The mechanisms behind the improved performance were proposed and discussed.  相似文献   

8.
We report a solution processed, p-doped film consisting of the organic materials 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (MTDATA) as the electron donor and 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) as the electron acceptor. UV–vis–NIR absorption spectra identified the presence of a charge transfer complex between the donor and acceptor in the doped films. Field-effect transistors were used to characterize charge transport properties of the films, yielding mobility values. Upon doping, mobility increased and then slightly decreased while carrier concentration increased by two orders of magnitude, which in tandem leads to conductivity increasing from 4 × 10?10 S/cm when undoped to 2 × 10?7 S/cm at 30 mol% F3TCNQ-Adl. The hole density was calculated based on mobility values extracted from OFET data and conductivity values extracted from bulk IV data for the MTDATA: x mol% F3TCNQ-Sdl films. These films were then shown to function as the hole injection/hole transport layer in a phosphorescent blue OLED.  相似文献   

9.
A novel cathodically coloring viologen electrochrome: 1,1′-bis(2-(1H-indol-3-yl)ethyl)-4,4′-bipyridinium diperchlorate (IEV), comprising of a 4,4′-bipyridyl core, sandwiched between two indole moieties, was synthesized using 3-(2-bromoethyl)-indole. An electrochromic device (ECD) was assembled using an electrolyte containing an imidazolium imide ionic liquid and characterized by a large electrical conductivity, thermal stability upto 150 °C, and an electrochemical potential stability range of ∼3.6 V. The IEV viologen was dissolved in the electrolyte and Prussian blue was used as the anodic electrochrome. The indole moieties of the IEV2+ salt owing to their electron donating tendency can act like bleaching agents and bleach the viologen faster (IEV+  IEV2+) and this hypothesis was used for the improved write–erase efficiency of the device. The device switched between colorless and dark violet–blue hues under applied potentials of ±1.5 V. A large transmission modulation (52%, λ = 605 nm), a high electrochromic coloring efficiency of 533 cm2 C1 at 605 nm and switching times of ∼2 s and good stability during 2000 cycles were reported herein. The electrochemical activity of the ECD improved when it was maintained at an elevated temperature of 70 °C, with no sign of thermal degradation. Furthermore, we also present the ability of this new viologen to function as an excellent redox mediator as we achieved an 86% enhancement in the power conversion efficiency of a solution processed solar cell, by its’ addition in the electrolyte. Our studies demonstrate this new viologen to be a highly versatile electroactive material which can be useful for both electrochromics and photovoltaics.  相似文献   

10.
A study on p-doping of organic wide band gap materials with Molybdenum trioxide using current transport measurements, ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy is presented. When MoO3 is co-evaporated with 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), a significant increase in conductivity is observed, compared to intrinsic CBP thin films. This increase in conductivity is due to electron transfer from the highest occupied molecular orbital of the host molecules to very low lying unfilled states of embedded Mo3O9 clusters. The energy levels of these clusters are estimated by the energy levels of a neat MoO3 thin film with a work function of 6.86 eV, an electron affinity of 6.7 eV and an ionization energy of 9.68 eV. The Fermi level of MoO3-doped CBP and N,N′-bis(1-naphtyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) thin films rapidly shifts with increasing doping concentration towards the occupied states. Pinning of the Fermi level several 100 meV above the HOMO edge is observed for doping concentrations higher than 2 mol% and is explained in terms of a Gaussian density of HOMO states. We determine a relatively low dopant activation of ~0.5%, which is due to Coulomb-trapping of hole carriers at the ionized dopant sites.  相似文献   

11.
A new electrochromic viologen, 1,1′-bis-[4-(5,6-dimethyl-1H-benzimidazole-1-yl)-butyl]-4,4′-bipyridinium dibromide (IBV) was synthesized by di-quaternization of 4,4′-bipyridyl using 1-(4-bromobutyl)-5,6-dimethyl-1H-benzimidazole. X-ray photoelectron spectroscopy confirmed the formation of the IBV (viologen) salt as distinct signals due to quaternary nitrogen and neutral nitrogen, and ionic-bonded bromide were identified. An electrochromic device encompassing a dicyanamide ionic liquid based gel polymeric electrolyte with high ionic conductivity, a thermal decomposition temperature above 200 °C, and a stable voltage window of ~4 V with the IBV viologen dissolved therein, was constructed. IBV is a cathodically coloring organic electrochrome and the device underwent reversible transitions between transparent and deep blue hues; the color change was accompanied by an excellent optical contrast (30.5% at 605 nm), a remarkably high coloration efficiency of 725 cm2 C?1 at 605 nm and switching times of 2–3 s. Electrochemical impedance spectroscopy revealed an unusually low charge transfer resistance at the IBV salt/gel interface, which promotes charge propagation and is responsible for the intense coloration of the reduced radical cation state. The device was subjected to repetitive switching between the colored and bleached states and was found to incur almost no loss in redox activity, up to 1000 cycles, thus ratifying its suitability for electrochromic window/display applications.  相似文献   

12.
The charge transport properties in a novel electroluminescent poly{[2-(4′,5′-bis(3″-methylbutoxy)-2′-p-methoxy-phenyl)phenyl-1,4-phenylene vinylene]-co-(9,9-dioctyl-2,7-fluorenylene vinylene)} (BPPPV-PF) have been studied using a time-of-flight (TOF) photoconductivity technique. The TOF transients for holes were recorded over a range of temperatures (207–300 K) and electric fields (1.5 × 105–6.1 × 105 V/cm). The hole transport in this polymer was weakly dispersive in nature with a mobility at 300 K of 5 × 10−5 cm2/V s at 2.5 × 105 V/cm. This increased to 8.4 × 10−5 cm2/V s at 6.1 × 105 V/cm. The temperature and field dependence of charge mobility has been analyzed using the disorder formalisms (Bässler’s Gaussian disorder model (GDM) and correlated disorder model (CDM)). The fit with Gaussian disorder (GDM) model yielded the mobility pre-factor μ = 1.2 × 10−3 cm2/V s, energetic disorder parameter σ = 82 meV and positional disorder parameter Σ = 1.73. The average inter-site separation (a = 7 Å) and the charge localization length (L = 3.6 Å) was estimated by assuming the CDM type charge transport. The microscopic charge transport parameters derived for this polymer are almost identical to the reported values for fully conjugated polymers with high chemical purity. The results presented indicate that the charge transport parameters can be controlled and optimized for organic optoelectronic applications.  相似文献   

13.
Three 2,2-dicyanovinyl (DCV) end-capped A-π-D-π-A type oligothiophenes (DCV-OTs) containing dithieno[3,2-b:2′,3′-d]silole (DTSi), cyclopenta[1,2-b:3,4-b′]dithiophene (DTCP) or dithieno[3,2-b:2′,3′-d]pyrrole (DTPy) unit as the central donor part, mono-thiophene as the π-conjugation bridge were synthesized. The absorption spectroscopies, cyclic voltammetry of these compounds were characterized. Results showed that all these compounds have intensive absorption band over 500–680 nm with a LUMO energy level around −3.80 eV, which is slightly higher than that of [6,6]phenyl-C61-butyric acid methyl ester (PC61BM, ELUMO = −4.01 eV), but lower than that of poly(3-hexylthiophene) (P3HT, ELUMO = −2.91 eV). Solution processed bulk heterojunction “all-thiophene” solar cells using P3HT as electron donor and the above mentioned oligothiophenes as electron acceptor were fabricated and tested. The highest power conversion efficiency (PCE) of 1.31% was achieved for DTSi-cored compound DTSi(THDCV)2, whereas PTB7:DTSi(THDCV)2 based device showed slightly higher PCE of 1.56%. Electron mobilities of these three compounds were measured to be around 10−5 cm2 V−1 s−1 by space charge limited current method, which is much lower than that of PC61BM, and was considered as one of the reason for the low photovoltaic performance.  相似文献   

14.
《Organic Electronics》2007,8(6):683-689
White organic light-emitting diodes (WOLEDs) with four wavelengths were fabricated by using three doped layers, which were obtained by separating recombination zones into three emitter layers. Among these emitters, blue emissions with two wavelengths (456 and 487 nm) were occurred in the 4,4′-bis(carbazoyl-(9))-stilbene (BCS) host doped with a perylene dye. Also, a green emission was originated from the tris(8-quinolinolato)aluminum (III) (Alq3) host doped with a green fluorescent of 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. Finally, an orange emission was obtained from the N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host doped with a 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) dye. The white light could be emitted by simultaneously controlling the emitter thickness and concentration of fluorescent dyes in each emissive layer, resulting in partial excitations among those three emitter layers. Electroluminescent spectra of the device obtained in this study were not sensitive to driving voltage of the device. Also, the maximum luminance for the white OLED with the CIE coordinate of (0.34, 0.34) was 56,300 cd/m2 at the applied bias voltage of 11.6 V. Also, its external quantum and the power efficiency at about 100 cd/m2 were 1.68% and 2.41 lm/W, respectively.  相似文献   

15.
Here we report efficient and color-stable white polymer light-emitting devices (WPLEDs) based on a newly synthesized efficient blue emitting polymer poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)fluorene)-co-(3,7-dibenziothiene-S,S-dioxide10)] (PPF-3,7SO10) which dually function as host material and blue emitter, with appropriate blending ratio with two typical electroluminescent polymers, green emitting poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) and orange–red emitter poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH–PPV) with appropriate blending ratio. In a single active layer WPLEDs with a blending ratio of 100:0.8:0.5 (B:G:R) by weight, white light emission with CIE coordinate of (0.34, 0.35) was realized. The resulted device shows a high luminous efficiency (LE) of 8.7 cd A?1, which could be further enhanced to 14.0 cd A?1 with incorporation of a thin hole transporting layer poly (vinylcarbazole) (PVK) at the anode side. The obtained luminous efficiency is listed as one of the highest reported value for WPLEDs based on all fluorescent polymer emitters. The devices had appropriate color temperature of 2500–6500 K and high color rendering index (CRI) of 72–79, and are characterized with stable electroluminescent spectra upon change of current density, stress and annealing at high temperature, thus can find application in solid-state lighting.  相似文献   

16.
Three new metal-free organic dyes FD13 with a planar dithieno[3,2-b:2′,3′-d]pyrrole unit as linker were synthesized and used for dye-sensitized solar cells with high molar extinction coefficients. In this work, dithieno[3,2-b:2′,3′-d]pyrrole was employed as π-conjugated bridge to construct A–π–d–π–A organic dyes, where 9,9-dihexyl-9H-fluorene was used as a donor, and cyanoacrylic acid as an electron acceptor. For a typical device, a solar energy conversion efficiency (η) of 6.36% based on FD2 was achieved under simulated AM 1.5 solar irradiation (100 mW cm?2) with a short-circuit photocurrent density (Jsc) of 13.76 mA cm?2, an open-circuit voltage (Voc) of 669 mV, a fill factor (ff) of 0.691. The results suggest that the organic dye with a functionalized dithienopyrrole unit is a promising candidate for DSSCs due to its high molar extinction coefficients.  相似文献   

17.
《Organic Electronics》2014,15(7):1678-1686
A high efficient UV–violet emission type material bis[4-(9,9′-spirobifluorene-2-yl)phenyl] sulfone (SF-DPSO) has been synthesized by incorporating electron deficient sulfone and morphologically stable spirobifluorene into one molecule. The steric and bulky compound SF-DPSO exhibits an excellent solid state photoluminescence quantum yield (ΦPL = 92%), high glass transition temperature (Tg = 211 °C) and high triplet energy (ET = 2.85 eV). In addition, the uniform amorphous thin film could be formed by spin-coating from its solution. These promising physical properties of the material made it suitable for using as UV–violet emitter in non-doped device and appropriate host in phosphorescent OLEDs. With SF-DPSO as an emitter, the non-doped solution processed device achieved an efficient UV–violet emission with the EL peak around 400 nm. By using SF-DPSO as a host, solution processed blue and green phosphorescent organic light emitting diodes showed a high luminous efficiency of 13.7 and 30.2 cd A−1, respectively.  相似文献   

18.
《Organic Electronics》2014,15(6):1244-1253
A hydrophilic polyfluorene-based conjugated polyelectrolyte (CPE) Poly[9,9-bis(4′-(6″-(diethanolamino)hexyloxy) phenyl)fluorene], PPFN-OH (Scheme 1) has been synthesized and utilized as cathode interlayer for both polymer light emitting diodes (PLEDs) and solar cells (PSCs). For comparison, another CPE namely Poly[9,9-bis(6′-(diethanolamino)hexyl)fluorene] (PFN-OH) has also been investigated. They comprise the same polyfluorene backbone structures with, respectively, diethanolaminohexyl (PFN-OH) and diethanolaminohexoxyphenyl (PPFN-OH) substituents attached to the C9 carbon of the fluorene repeat unit. In comparison to reference devices with more reactive Ca/Al cathodes, utilizing these CPEs as interlayers allowed an Al cathode to be used for blue light emission PLEDs, yielding 51% and 92% enhancement of maximum luminous efficiency (LE) for PFN-OH and PPFN-OH, respectively. The PLEDs with PPFN-OH showed both higher maximum LE and maximum luminance (L) (LE = 2.53 cd/A at 6.2 V, L = 9917 cd/m2 at 8.3 V) than devices with PFN-OH (2.00 cd/A at 4.1 V, 3237 cd/m2 at 7.2 V). The PPFN-OH PLEDs also showed no significant roll-off in efficiency with increasing current density up to 400 mA/cm2, indicating excellent electron injection ability and stability for this interlayer. The insertion of alkoxy-phenyl groups at the C9-position in PPFN-OH is clearly advantageous. This simple modification significantly improves the CPE cathode interlayer performance. Parallel investigations of the electron extraction properties of PPFN-OH in inverted architecture PSCs with PCDTBT:PC70BM bulk heterojunction active layers demonstrated a power conversion efficiency enhancement of ∼19% (from 4.99% to 5.95%) for indium tin oxide cathode devices compared with reference devices using Ca/Al cathodes. These results confirm PPFN-OH to be a promising interlayer material for high performance solution processed organic optoelectronic devices.  相似文献   

19.
《Microelectronics Journal》2007,38(4-5):509-512
Top contact organic thin-film transistors (TC OTFTs) based on pentacene are fabricated. For improving the contact characteristics between the organic semiconductor thin-film and gold electrodes, we doped the starburst molecular 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine) (m-MTDATA), which is an excellent hole injection material for the organic light-emitting devices (OLEDs), into the interlayer contact with the electrodes. Compared with conventional TC OTFT, the performances of the organic transistor with the doped interlayer are improved. The field-effect mobility increases from 0.16 to 0.51 cm2/V s, and threshold voltage downshifts from –11 to –2.8 V for the linear region. The on/off current ratio is more than 104 when the gate voltage varies from 0 to –20 V. We ascribe the improvements to the doped interlayer for which the contact resistance is reduced and the hole injection is enhanced.  相似文献   

20.
《Organic Electronics》2014,15(6):1184-1188
Single-crystalline organic transistors of 3,11-didecyl-dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT) were fabricated by solution processes on top of the patterned hybrid ultrathin gate dielectrics consisting of 3.6 nm-thick aluminum oxide and self-assembled monolayers (SAMs). Due to the excellent crystallinity of the channel films, bottom-gate and top-contact field-effect transistors exhibited the average field-effect mobility of 3.7 cm2/V s and 4.3 cm2/V s for C10-DNBDT-NW and C10-DNTT, respectively. These are the first successful devices of solution-processed single-crystalline transistors on ultrathin gate dielectrics with the mobility above 1 cm2/V s, opening the way to develop low-power-consumption and high-performance printed circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号