首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2014,15(6):1244-1253
A hydrophilic polyfluorene-based conjugated polyelectrolyte (CPE) Poly[9,9-bis(4′-(6″-(diethanolamino)hexyloxy) phenyl)fluorene], PPFN-OH (Scheme 1) has been synthesized and utilized as cathode interlayer for both polymer light emitting diodes (PLEDs) and solar cells (PSCs). For comparison, another CPE namely Poly[9,9-bis(6′-(diethanolamino)hexyl)fluorene] (PFN-OH) has also been investigated. They comprise the same polyfluorene backbone structures with, respectively, diethanolaminohexyl (PFN-OH) and diethanolaminohexoxyphenyl (PPFN-OH) substituents attached to the C9 carbon of the fluorene repeat unit. In comparison to reference devices with more reactive Ca/Al cathodes, utilizing these CPEs as interlayers allowed an Al cathode to be used for blue light emission PLEDs, yielding 51% and 92% enhancement of maximum luminous efficiency (LE) for PFN-OH and PPFN-OH, respectively. The PLEDs with PPFN-OH showed both higher maximum LE and maximum luminance (L) (LE = 2.53 cd/A at 6.2 V, L = 9917 cd/m2 at 8.3 V) than devices with PFN-OH (2.00 cd/A at 4.1 V, 3237 cd/m2 at 7.2 V). The PPFN-OH PLEDs also showed no significant roll-off in efficiency with increasing current density up to 400 mA/cm2, indicating excellent electron injection ability and stability for this interlayer. The insertion of alkoxy-phenyl groups at the C9-position in PPFN-OH is clearly advantageous. This simple modification significantly improves the CPE cathode interlayer performance. Parallel investigations of the electron extraction properties of PPFN-OH in inverted architecture PSCs with PCDTBT:PC70BM bulk heterojunction active layers demonstrated a power conversion efficiency enhancement of ∼19% (from 4.99% to 5.95%) for indium tin oxide cathode devices compared with reference devices using Ca/Al cathodes. These results confirm PPFN-OH to be a promising interlayer material for high performance solution processed organic optoelectronic devices.  相似文献   

2.
We demonstrate highly efficient white emission polymer light-emitting diodes (WPLEDs) from multilayer structure formed by solution processed technique, in which alcohol/water-soluble polymer, poly [(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was incorporated as electron-injection layer and Al as cathode. It was found that the device performance was very sensitive to the solvents from solution of which the PFN electron-injection layer was cast. Devices with electron-injection layer cast from methanol solution show degraded performance while the best device performance was obtained when mixed solvent of water and methanol with ratio of 1:3 was used. We attribute the variation in device performance to washing out the electron transport material in the emissive layer due to rinse effect. As a result of alleviative loss of electron transport material in the emissive layer, the optimized device with a peak luminous efficiency of 18.5 cd A?1 for forward-viewing was achieved, which is comparable to that of the device with same emissive layer but with low work-function metal Ba cathode (16.6 cd A?1). White emission color with Commission International de I’Eclairage coordinates of (0.321, 0.345) at current 10 mA cm?2 was observed.  相似文献   

3.
A new donor–acceptor (D?A) copolymer (PIPY–DTBTA) containing 6,12-dihydro-diindeno[1,2-b;1′,2′-e]pyrazine donor and benzotriazole acceptor was synthesized and characterized for multifunctional applications in organic field-effect transistors (OFETs), polymer solar cells (PSCs) and polymer light-emitting diodes (PLEDs). The polymer exhibits high molecular weights, excellent film-forming ability, a deep HOMO energy level, and good solution processability. Solution-processed thin film OFETs based on this polymer revealed good p-type characteristic with a high hole mobility up to 0.0521 cm2 V?1 s?1. Bulk-heterojunction PSCs comprising this polymer and PC61BM gave a power conversion efficiency (PCE) of 0.77%. The single-layer PLEDs based on PIPY–DTBTA emitted a yellow–red light with a maximum brightness of 385 cd m?2 at the turn-on voltage of 6 V.  相似文献   

4.
《Organic Electronics》2014,15(7):1545-1551
Indium tin oxide (ITO)-free polymer solar cells (PSCs) with the structure of Glass/tungsten trioxide (WO3)/Au/WO3/PCDTBT: PC70BM/LiF/Al was fabricated and studied. The multilayer structure of WO3/Au/WO3 is used as the potential transparent electrode to replace ITO. Metal resonant microcavity, which can enhance light harvesting of active layers, was constructed between Au and Al electrodes. According to the JV and IPCE characterization with 70 nm active layer, power conversion efficiency (PCE) of the ITO-free microcavity device is approaching 4.55%, which is higher than that of the ITO-based device. However, PCE of the ITO-free device is much lower than that of the ITO-based device when the thickness of active layer increases to 130 nm. The opposite experimental tendency leads to theoretical research toward the simulation of light absorption and optical electric field and the calculation of maximum short circuit current density (Jsc max) as a function of active layer thickness based on ITO-free and ITO-based devices. The research results show that microcavity effect is closely linked to intrinsic absorption of active layers.  相似文献   

5.
《Organic Electronics》2004,5(6):271-281
We report on high-efficiency polymer light-emitting diodes (PLEDs) based on poly [2-methoxy-5-(3′,7′-dimethyloctyloxyl)]-1,4-phenylene vinylene (OC1C10) with LiF-modified cathodes. Devices with different cathodes are made and characterized by the electroabsorption technique to measure their built-in voltage. Devices with a LiF/Al bilayer cathode or a LiF:Al composite cathode, all show significantly improved performance as compared to those with bare Al cathodes. The improvement is correlated with enhanced electron injection due to a decrease of the electron injection barrier, which is also indicated by the electroabsorption measurements. The same effect is also observed with LiF(0.6 nm)/Mg cathodes. However, inserting the same LiF thin film between Ag and OC1C10 does not improve the device performance. Cathodes composed of ultra-thin films of LiF(0.6 nm)/Al(1 nm) or LiF:Al(2 nm) covered by Ag (100 nm) show the same performance as LiF(0.6 nm)/Al bilayer cathode or a LiF:Al composite cathode, indicating that the enhancement is specific to LiF and Al. Our experiments can be explained by assuming that Li-ions can dissociate from LiF and diffuse into the OC1C10 layer, leading to an n-type zone close to the polymer/cathode interface. This n-doped layer at the interface facilitates electron injection at the cathode/polymer interface and eventually leads to the formation of an Ohmic contact.  相似文献   

6.
We report low dark current small molecule organic photodetectors (OPDs) with an inverted geometry for image sensor applications. Adopting a very thin MoOx:Al cathode interlayer (CIL) in the inverted OPD with a reflective top electrode results in a remarkably low dark current density (Jd) of 5.6 nA/cm2 at reverse bias of 3 V, while maintaining high external quantum efficiency (EQE) of 56.1% at visible wavelengths. The effectiveness of the CIL on the diode performance has been further identified by application to inverted OPDs with a semi-transparent top electrode, leading to a significantly low Jd of 0.25 nA/cm2, moderately high EQE540 nm of 25.8%, and subsequently high detectivity of 8.95 × 1012 Jones at reverse bias of 3 V. Possible origins of reduced dark currents in the OPD by using the MoOx:Al CIL are further described in terms of the change of interfacial energy barrier and surface morphology.  相似文献   

7.
Owing to their low cost, easy processing, and the possibility of flexible fabrication, polymer light-emitting diodes (PLEDs) are emerging as an important class of materials. Despite promising characteristics, the relatively easy ionization of the well-known low-work-function cathodes such as Ca and Ba prevents the full usage of these materials. Herein, we report the syntheses of three alcohol-soluble conjugated polymers with different conjugation lengths and electron affinities as electron injection and transport materials for PLEDs: poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-tetrafluorobenzene] (PFOH-1), poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-thiophene] (PFOH-2), and poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-benzo-thiadiazole] (PFOH-3). For comparison, devices using Al, Ca, and Al cathodes were also fabricated. The device based on the Al cathode showed lower performance with a luminescence efficiency of 0.93 cd/A and a luminance of 248 cd/m2; that based on the low-work-function metal Ca as the cathode showed a near-threefold increase in luminescence efficiency at 2.51 cd/A and brightness at 856 cd/m2 owing to greatly enhanced electron injection from the cathode; and the device employing the PFOH-3/Al cathode exhibited a luminescence efficiency of 2.35 cd/A and a brightness of 667 cd/m2 at a current density of 35 mA/cm2, which is comparable with the performance of the device with the Ca cathode.  相似文献   

8.
In this study, polymer solar cells (PSCs) doped with Au nanoparticles (Au NPs) were successfully fabricated to maximize the photon-harvesting properties on the photoactive layer. In addition, a conductivity-enhanced hybrid buffer layer was introduced to improve the photon absorption properties and effectively separate the generated charges by adding Au NPs and dimethylsulfoxide (DMSO) to the PH 500 as a buffer layer. The PSC performance was optimized with a 88% improvement over the conventional PSCs (photoactive area: 225 mm2, power conversion efficiency (PCE): 3.2%) by the introduction to the buffer layer of Au NPs and DMSO at 10 wt% and 1.0 wt%, respectively, and with 15 wt% Au NP doping in the photoactive layer. The internal resistance was decreased due to the increased photocurrent caused by the localized surface plasmon resonance (LSPR) effect of the Au NPs in the photoactive layer and by the improvement of carrier mobility induced by the DMSO doping of the buffer layer. As a result, the series resistance (RS) deceased from 42.3 to 19.7 Ω cm2 while the shunt resistance (RSH) increased from 339 to 487 Ω cm2.  相似文献   

9.
Bidirectional negative differential resistance (NDR) at room temperature with high peak-to-valley current ratio (PVCR) of ~10 are observed from vertical organic light-emitting transistor indium-tin oxide (ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine) (α-NPD)(60 nm)/Al(30 nm)/α-NPD(60 nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50 nm)/Al by narrowing the transport channels for charge carriers with a thick-enough middle Al gate electrode layer to block charge carriers transporting from source electrode to drain electrode. When the transport channel for charge carriers gets large enough, the controllability of gate bias on the drain–source current gets weaker and the device almost works as an organic light-emitting diode only. Therefore, it provides a very simple way to produce NDR device with dominant bidirectional NDR and high PVCR (~10) at room temperature by narrowing transport channels for charge carriers in optoelectronics.  相似文献   

10.
《Organic Electronics》2014,15(8):1884-1889
Solution-processed n-type organic field effect transistors (OFETs) are in need of proper metal contact for improving injection and mobility, as well as balanced hole mobility for building logic circuit units. We address the two distinct problems by a simple technique of transfer-printing. Transfer-printed Au contacts on a terrylene-based semiconductor (TDI) significantly reduced the inverse subthreshold slope by 5.6 V/dec and enhanced the linear mobility by over 5 times compared to evaporated Au contacts. Hence, devices with a high-work-function metal (Au) are comparable with those with low-work-function metals (Al and Ca), indicating a fundamental advantage of transfer-printed electrodes in electron injection. We also transfer-printed a poly(3-hexylthiophene) (P3HT) layer onto TDI to construct a double-channel ambipolar transistor by a solution process for the first time. The transistor exhibits balanced hole and electron mobility (3.0 × 10−3 and 2.8 × 10−3 cm2 V−1 s−1) even in a coplanar structure with symmetric Au electrodes. The technique is especially useful for reaching intrinsic mobility of new materials, and enables significant enlargement of the material tanks for solution-processed functional heterojunction OFETs.  相似文献   

11.
Five novel spirobifluorene derivatives, SPF-DM, SPF-MB, SPF-BB, BSPF-NA1 and BSPF-NA2 were synthesized starting from the readily available reagent 4,4′-bisalkylated biphenyl. Their linear absorption, fluorescence and thermal properties were examined and their redox potential levels were estimated by cyclic voltammetry. These compounds possess high thermal stability. SPF-MB and SPF-BB possess excellent spectral sensitivities to pH changes and can be used as optical pH sensors of a wide pH range. The recognition behavior of SPF-BB toward various metal ions has been evaluated in a acetonitrile/water (15:1, v/v) solvent system. SPF-BB is highly selective in recognizing Ag+. The electroluminescent properties of SPF-DM, SPF-MB, BSPF-NA1 and BSPF-NA2 are demonstrated with a device configuration of ITO/MoO3 (6 nm)/NPB (80 nm)/EML (30 nm)/TPBI (40 nm)/LiF (1 nm)/Al (100 nm). The devices of BSPF-NA1 and BSPF-NA2 display a yellow emission in the EL spectra and their maximum brightness reached 380 and 311 cd m?2, respectively. At low turn-on voltage (7.9 V) a light blue emission was observed in the device of SPF-DM and its maximum brightness reached 391 cd m?2. Notably, the device of SPF-MB has a white emission with CIE coordinates (0.293, 0.307).  相似文献   

12.
《Organic Electronics》2014,15(4):835-843
TiO2 sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO2 nanoparticles (TiO2 NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H2O in the process of peptization both the crystallinity and particle size of TiO2 NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO2 NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO2 NPs/Al showed the short-circuit current (Jsc) of 12.83 mA/cm2 and the PCE of 4.24%, which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO2 buffer layer. The stability measurement showed that PSC devices with a TiO2 NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H2O diffusion into the active layers. The observations indicate that TiO2 NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.  相似文献   

13.
《Organic Electronics》2014,15(3):785-791
Under white ambient illumination and without bias, a reflective organic light-emitting device (ROLED) comprising a microcavity cathode exhibited various colors for static information display applications by means of internal interference and absorption effects. The configuration of this microcavity cathode was a metal/organometallic/metal structure of Al (10 nm)/Ag (15 nm)/Ag nanoparticles doped inside tris(8-hydroxyquinolinato) aluminum (Alq3) (x nm)/Al (100 nm) with excellent conductivity. The thickness of the Ag:Alq3 played a crucial role in determining the reflection color; for example, varying it from 20, 40, 60, 80 and 100 nm yielded the colors light yellow, light orange, reddish purple, greenish blue, and light green, respectively. In the dark, this ROLED can be used to display information with an ultra-high contrast ratio by applying on a small bias, like conventional OLED displays. Hence, this ROLED is a highly promising candidate for applications in energy-saving electronic fixed-pattern signs, logos, indicators, and manual information displays.  相似文献   

14.
《Organic Electronics》2014,15(4):850-857
A family of aminoalkyl functionalized blue-, green- and red-emitting polyfluorene based copolymers were synthesized by Suzuki copolymerization. Dibenzothiophene-S,S-dioxide-3,7-diyl (FSO), 2,1,3-benzothiadiazole (BT) and 4,7-di-2-thienyl-2,1,3-benzothiadiazole (DTBT) were incorporated into the backbone of copolymers as blue, green and red chromophores, respectively. It was realized that for all these aminoalkyl functionalized copolymers, the thermal stabilities, UV–vis absorption and electrochemical properties are not affected by molar ratio of aminoalkyl side groups. However, the increased amino-groups content can induce the formation of excimer in FSO based blue-emitting copolymer, which in turn leaded to broadened photoluminescence and electroluminescence spectra along with decreased emission efficiency. In contrast, device based on green and red-emitting copolymers exhibited stable emission, and device performance improved progressively with the enhanced content of aminoalkyl co-monomers. Comparing to the copolymers without aminoalkyl side chains, aminoalkyl functioned materials exhibited distinctly improved device performances for the application as emissive layer in light emitting diodes using high work-function Al as cathode due to the formation of interfacial dipoles that can facilitate electron injection. The maximum luminous efficiency of 3.28, 7.31 and 0.79 cd A−1 was achieved based on copolymers BFN1, GFN15 and RFN15, respectively with device architecture of ITO/PEDOT:PSS/PVK/copolymer/Al. These results indicate that aminoalkyl functionalized copolymers can have great potential for the application as efficient light-emitting layer with high work-function/air-stable cathode.  相似文献   

15.
A neutral ligand 9-(4-tert-butylphenyl)-3,6-bis(diphenylphosphineoxide)-carbazole (DPPOC) and its complex Tb(PMIP)3DPPOC (A, where PMIP stands for 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) were synthesized. DPPOC has a suitable lowest triplet energy level (24,691 cm?1) for the sensitization of Tb(III) (5D4: 20,400 cm?1) and a significantly higher thermal stability (glass transition temperature 137 °C) compared with the familiar ligand triphenylphosphine oxide (TPPO). Experiments revealed that the emission layer of the Tb(PMIP)3DPPOC film could be prepared by vacuum co-deposition of the complex Tb(PMIP)3(H2O)2 (B) and DPPOC (molar ratio = 1:1). The electroluminescent (EL) device ITO/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-diphenyl-4,4′-diamine (NPB; 10 nm)/Tb(PMIP)3 (20 nm)/co-deposited Tb(PMIP)3DPPOC (30 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP; 10 nm)/tris(8-hydroxyquinoline) (AlQ; 20 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) exhibited pure emission from terbium ions, even at the highest current density. The highest efficiency obtained was 16.1 lm W?1, 36.0 cd A?1 at 6 V. At a practical brightness of 119 cd m?2 (11 V) the efficiency remained above 4.5 lm W?1, 15.7 cd A?1. These values are a significant improvement over the previously reported Tb(PMIP)3(TPPO)2 (C).  相似文献   

16.
《Organic Electronics》2008,9(6):964-967
A transparent Al/WO3/Au anode is introduced to fabricate high efficiency organic light-emitting devices (OLEDs). By optimizing the thicknesses of each layers of the Al/WO3/Au structure, the transmittance of Al(7 nm)/WO3(3 nm)/Au(13 nm) has reached over 55%. Concerning the performance of OLEDs using the optimized anode, the electroluminescence (EL) current efficiency and brightness are enhanced and the EL spectrum is greatly narrowed as compared to the OLEDs using indium-tin-oxide (ITO) as the anode. The results indicate that the metal/metal oxide/metal transparent electrode is a good structure for the anode of high performance OLEDs. In addition, Al/WO3/Au can function as a composite transparent electrode for top-emitting OLEDs.  相似文献   

17.
《Organic Electronics》2008,9(2):171-182
Two novel iridium complexes both containing carbazole-functionalized β-diketonate, Ir(ppy)2(CBDK) [bis(2-phenylpyridinato-N,C2)iridium(1-(carbazol-9-yl)-5,5-dimethylhexane-2,4-diketonate)], Ir(dfppy)2(CBDK) [bis(2-(2,4-difluorophenyl)pyridinato-N,C2)iridium(1-(carbazol-9-yl)-5,5-dimethylhexane-2,4-diketonate)] and two reported complexes, Ir(ppy)2(acac) (acac = acetylacetonate), Ir(dfppy)2(acac) were synthesized and characterized. The electrophosphorescent properties of non-doped device using the four complexes as emitter, respectively, with a configuration of ITO/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-diphenyl-4,4′-diamine (NPB) (20 nm)/iridium complex (20 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (5 nm)/tris(8-hydroxyquinoline)aluminum (AlQ) (45 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) were examined. In addition, a most simplest device, ITO/Ir(ppy)2(CBDK) (80 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm), and two double-layer devices with configurations of ITO/NPB (30 nm)/Ir(ppy)2(CBDK) (30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) and ITO/Ir(ppy)2(CBDK) (30 nm)/AlQ (30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) were also fabricated and examined. The results show that the non-doped four-layer device for Ir(ppy)2(CBDK) achieves maximum lumen efficiency of 4.54 lm/W and which is far higher than that of Ir(ppy)2(acac), 0.53 lm/W, the device for Ir(dfppy)2(CBDK) achieves maximum lumen efficiency of 0.51 lm/W and which is also far higher than that of Ir(dfppy)2(acac), 0.06 lm/W. The results of simple devices involved Ir(ppy)2(CBDK) show that the designed complex not only has a good hole transporting ability, but also has a good electron transporting ability. The improved performance of Ir(ppy)2(CBDK) and Ir(dfppy)2(CBDK) can be attributed to that the bulky carbazole-functionalized β-diketonate was introduced, therefore the carrier transporting property was improved and the triplet–triplet annihilation was reduced.  相似文献   

18.
This work presents post-fabrication electric field and heat treatment methods developed for polymer light emitting diodes (PLEDs), which have degraded due to exposure to oxygen and water vapors during low-cost fabrication performed in standard room conditions. Investigated PLEDs have structures composed of indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate), (PEDOT:PSS), poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), and aluminum (Al). Heat treatment restores the light emitting function of dysfunctional PLEDs but also causes a high turn-on voltage of 10 V. Electric field treatment utilizing ?1 V reduces this high turn-on voltage to 3 V. This procedure also improves open circuit voltages from 5 mV to 55 mV, and short circuit currents from 0.5 nA to 5 nA when PLEDs are operated as photovoltaic cells under a light intensity of 500 mW/m2. Repeated IV sweep measurements additionally show improved stability and uniformity. The reasons for these improvements, the usage of an optimal treatment temperature of 130 °C, and the usage of treatment voltages of 0 and ?1 V are discussed.  相似文献   

19.
Aiming to environment protection, green solvents are crucial for commercialization of solution-processed optoelectronic devices. In this work, d-limonene, a natural product, was introduced as the non-aromatic and non-chlorinated solvent for processing of polymer light-emitting diodes (PLEDs) and organic field effect transistors (OFETs). It was found that d-limonene could be a good solvent for a blue-emitting polyfluorene-based random copolymer for PLEDs and an alternating copolymer FBT-Th4(1,4) with high hole mobility (μh) for OFETs. In comparisons to routine solvent-casted films of the two conjugated polymers, the resulting d-limonene-deposited films could show comparable film qualities, based on UV–vis absorption spectra and observations by atomic force microscopy (AFM). With d-limonene as the processing solvent, efficient blue PLEDs with CIE coordinates of (0.16, 0.16), maximum external quantum efficiency of 3.57%, and luminous efficiency of 3.66 cd/A, and OFETs with outstanding μh of 1.06 cm2 (V s)−1 were demonstrated. Our results suggest that d-limonene would be a promising non-aromatic and non-chlorinated solvent for solution processing of conjugated polymers and molecules for optoelectronic device applications.  相似文献   

20.
We explored mechanisms for the high-field (|B| > 50 mT) decay of organic magneto-electroluminescence. The organic/metal interface in pristine tris (8-hydroxyquinolinato) aluminum-based organic light-emitting diodes was modified by changing the metal cathodes and their deposition methods. The metals investigated were Al, Au, and Cu and the methods used include molecular beam deposition, thermal resistive evaporation, and electron beam evaporation (EBE), respectively. Experimental results revealed that the high-field decay can be observed at room temperature when the cathode is: (i) Cu deposited by EBE or (ii) Au deposited by any of the three deposition methods. Furthermore, this decay is different from the previously reported high-field decay that originates from triplet–triplet annihilation, triplet-charge reaction processes or Δg mechanism. We suggest that the magnetic field can increase the extent of overlap between the electron–hole recombination zone and the organic/metal interface by suppressing electron mobility. The spin–orbital coupling at the organic/metal interface consequently induces intersystem crossing to increase with magnetic field leading to the observed high-field decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号