共查询到16条相似文献,搜索用时 46 毫秒
1.
采用机械合金化和放电等离子烧结工艺制备了低密度A1TiCrNiCu高熵合金材料,重点研究了球磨时间对各元素粉末的合金化过程及烧结温度(950 ~ 1050℃)对高熵合金组织及力学性能的影响.结果 表明:高熵合金粉末为单相bcc结构,随着球磨时间的增加,粉末粒径先变大后变小,其最终平均粒径大约为20 μm.高熵合金块体材... 相似文献
2.
本文通过氩气雾化制备CoCrCuFeNi球形粉末,随后在900℃、1000℃、1100℃、1150℃温度下通过放电等离子活化烧结(Spark plasma sintering,SPS),成功制备CoCrCuFeNi高熵合金块体。结果表明:随着烧结温度的升高,材料室温抗拉强度先降低后升高,均匀却延伸率先大幅度提高,随后降低;当烧结温度为1100℃时,材料屈服强度和抗拉强度分别达到379.3MPa和655.6MPa,断后延伸率达21.9%;当烧结温度超过1100℃时,开始出现局部熔化现象,材料内部出现元素明显偏析现象。烧结温度为900℃时,拉伸断口沿球形粉末表面脆性断裂,随着烧结温度提高,断口转变为包含韧窝的韧性断裂。由于高温烧结过程中基体内发生渗碳现象,透射电镜结果表明碳与基体发生反应,形成第二相碳化物。 相似文献
3.
4.
采用放电等离子烧结法在不同温度下制备AlCrCoFeNi2.1高熵合金(HEA),并对其微观组织、耐腐蚀性能和力学性能进行了研究。结果表明,烧结后的AlCrCoFeNi2.1 HEA最大相对密度可达99.18%;该HEA主要由体心立方(bcc)相和面心立方(fcc)相组成,其比例分别为20.6%和79.4%。与fcc相相比,AlCrCoFeNi2.1 HEA中bcc相的再结晶组织和变形组织更多,且bcc相在3.5%(质量分数)NaCl溶液中更容易被腐蚀。随着应变速率的增加,bcc相和fcc相的压力恢复速率降低,硬化效果增强。在1050 ℃下烧结的AlCrCoFeNi2.1 HEA具有较高的极限抗拉伸强度,这主要归因于晶界强化、固溶强化和合金粒子之间良好的界面结合。该HEA的断裂形式包括bcc相的脆性断裂和fcc相的韧性断裂。 相似文献
5.
对(FeNi)67Cr15Mn10Al5Ti3高熵合金进行退火、冷轧和热轧+冷轧等工艺处理,采用X射线衍射仪、扫描电镜和万能试验机分别对合金进行物相组成、组织形貌以及力学性能测试和表征。结果表明,铸态和退火态的非等主元(FeNi)67Cr15Mn10Al5Ti3高熵合金更易形成单相固溶体;在中等变形的热轧+冷轧工艺下,合金形成FCC+BCC的双相固溶体,其屈服强度可提高到460.0 MPa;在中等变形的冷轧工艺下,合金会形成细小的金属间化合物,从而具有细小金属间化合物强化机制,使屈服强度显著提升并达到722.0 MPa,同时,合金仍具有约25.7%的均匀伸长率,综合力学性能最佳。 相似文献
6.
以纯金属元素粉末为原料,采用放电等离子烧结工艺制备了MoNbTaW难熔高熵合金,研究了烧结温度和保温时间等工艺参数对MoNbTaW难熔高熵合金的物相、晶体结构、烧结行为和力学性能的影响。结果表明,在烧结温度1800℃和保温5min即可形成BCC单相高熵合金;烧结温度是影响MoNbTaW难熔高熵合金致密度、晶粒尺寸和力学性能的主要因素;随着烧结温度的升高,合金的晶粒尺寸增大,致密度、硬度和和屈服强度均增高;烧结温度为2000℃时合金的致密度可达99.8%,化学成分无偏析,屈服强度为1314±14MPa,断裂韧性为(5~6)MPa.m1/2,其断裂模式为解理断裂。 相似文献
7.
8.
采用真空电弧炉熔炼制备了AlxFeCoNiB0.1(x=0.4,0.5,0.8,1.2,1.6 at%)高熵合金,并对其微观组织和力学性能进行测试。随Al含量增加,合金的铸态枝晶由FCC相转变为B2(AlNi)/BCC相。当x=0.4和0.5时,合金的组织由枝晶FCC相和枝晶间组织B2相及(Fe,Co)2B组成;x=0.8时,枝晶由B2相组成,枝晶间由FCC相及(Fe,Co)2B组成;x=1.2时,枝晶间由共晶组织FCC+(Fe,Co)2B组成,BCC呈纳米级颗粒状;x=1.6时,共晶组织消失。随Al含量的增加,抗压拉强度先上升后下降,Al含量为0.8时达到峰值,为2243MPa,适量的Al能提高高熵合金综合力学性能。 相似文献
9.
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和万能试验机等,研究了不同Al含量对CoFeNiVAlx(x=0~1)高熵合金微观组织与力学性能的影响。结果表明:Al元素的添加促进BCC相的形成,CoFeNiVAlx显微组织由柱状晶转变为等轴晶。BCC+FCC双相结构使得合金屈服强度提升的同时保留了良好的塑性。其中,CoFeNiVAl0.5合金拥有1272 MPa的高屈服强度和32%的塑性应变。 相似文献
10.
11.
12.
13.
为探究轻质高熵合金AlZnMgCuMn的微观组织、力学性能、耐腐蚀性能及合适的热处理工艺,本研究采用XRD、SEM、EDS分析了合金的微观组织,通过电子万能试验机和维氏硬度计测试其力学性能,利用动电位极化测试、阻抗谱、CLSM和AFM对耐腐蚀性能及其机理进行分析。结果表明,AlZnMgCuMn高熵合金由Al-Mn准晶体相和hcp相组成,前者表现为枝晶形貌,后者则分布于枝晶间。热处理对两相形貌、分布和体积分数的影响较小。铸态AlZnMgCuMn的抗压强度、压缩率和显微维氏硬度(HV0.5)分别为415MPa、4.4%、4519.7MPa,自腐蚀电位和电流分别为-726.344 mV和1.882μA/cm2。电化学腐蚀之后合金表面产生明显的腐蚀坑,其深度约为11.8μm,枝晶Al-Mn相具有较低的电位作为阳极而优先被腐蚀,随着腐蚀的加剧,腐蚀微区彼此连接并发展成为大面积的腐蚀坑。 相似文献
14.
15.
采用微波烧结工艺制备B4C/FeCoNiCrAl与B4C/FeCoNiCrCu高熵合金基复合材料,研究了不同含量的B4C对FeCoNiCrAl、FeCoNiCrCu高熵合金组织结构和性能的影响。结果表明:B4C的添加一定程度上增加了基体合金的晶格畸变,合金微观组织由高熵合金基底区、碳化硼分解生成的硼化物区和碳化物区3部分构成。体心立方结构的FeCoNiCrAl高熵合金中硼化物为针状,面心立方结构FeCoNiCrCu高熵合金中硼化物组织为块状,这与合金体系中的原子尺寸差相关。B4C可显著提高合金的强度和硬度,塑性略有下降。4%B4C/FeCoNiCrAl合金复合材料具有最高的硬度和压缩强度值,分别为627.1HV0.5和1836MPa,但是塑性较差,压缩比仅为11%;而4%B4C/FeCoNiCrCu合金复合材料硬度与强度仅为249.3HV0.5与1413MPa,低于4%B4C/FeCoNiCrAl复合材料,但塑性较好,压缩比可达35%。 相似文献
16.
采用真空感应熔炼法制备了Fe0.5MnNi1.5CrNbx(x=0,0.05,0.1,摩尔比)高熵合金,并分析了不同Nb含量对其组织和力学性能的影响。结果表明,不含Nb元素的合金具有单相fcc结构,其抗拉强度和断裂延伸率(即延展性)分别为519 MPa和47%。添加少量的Nb(x=0.05)后出现(200)织构和少量Fe2Nb Laves相,合金的延展性增加到55%,并且抗拉强度增加到570 MPa。当Nb含量增加到x=0.1时,织构减少,而Fe2Nb Laves相增多,抗拉强度和延展性分别为650 MPa和45%。 相似文献