首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的 通过在45Mn2钢表面进行电火花沉积FeCoCrNiCu高熵合金涂层,改变其表面性能。方法 采用真空吸铸法制备直径为3 mm的FeCoCrNiCu高熵合金电极,采用电火花沉积技术,在45Mn2钢表面制备高熵合金沉积层。通过X射线衍射仪(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)等分析研究沉积层的相组成、表面形貌、表面粗糙度和显微组织。通过三电极体系对涂层进行极化曲线和电化学阻抗谱(EIS)测试,分析其在3.5%NaCl溶液中的电化学腐蚀行为。结果 制备的FeCoCrNiCu涂层连续、均匀,具有简单的FCC结构,表面呈银灰色橘皮状,厚度约为25 μm。涂层表面凸凹不平,为典型的“溅射状”花样形貌,表面粗糙度均方根偏差Rq约为4 μm。极化曲线表明,高熵沉积层自腐蚀电位为-0.548 V,较45Mn2基材正移约180 mV,腐蚀电流密度为1.59 μA/cm2,约为基材的1/6。电化学阻抗谱EIS测试结果显示,FeCoCrNiCu高熵合金沉积层较45Mn2基材具有更大的容抗弧半径和极化电阻,其模拟电路可以用R(Q(R(QR)))表示。结论 电火花沉积技术是一种极具发展潜力的高熵合金涂层制备技术,制备的FeCoCrNiCu高熵合金涂层可有效提高基材的耐蚀性能。  相似文献   

2.
目的提高H13钢表面的力学性能和耐蚀性,延长模具的使用寿命。方法用Nb棒作为电极,氩气作为保护气体,通过电火花沉积技术在H13钢表面制备Nb沉积层。利用扫描电子显微镜分析沉积层的表面形貌、显微结构及磨痕形貌,利用X射线衍射仪分析沉积层的相组成,利用能谱仪分析沉积层的元素分布,采用显微硬度计和磨损试验机测试沉积层的显微硬度和耐磨性,采用电化学工作站对沉积层进行耐蚀性测试。结果 Nb电火花沉积层表面呈橘皮状,具有一定的粗糙度,主要由Fe_2Nb和Fe_(0.2)Nb_(0.8)等相组成。沉积层截面组织连续、致密,无明显缺陷,强化层内存在大量的微晶组织和非晶组织。Nb涂层与基体发生了元素的相互扩散和冶金结合的过程。沉积层显微硬度高达642HV,为基体的3.2倍。在同等磨损条件下,Nb沉积层磨损失重约为基体的1/3,磨痕较浅。沉积层在3.5%NaCl溶液中的电化学自腐蚀电位比基体提高了113 mV,自腐蚀电流密度显著降低。结论在H13钢表面电火花沉积Nb涂层,可有效提高其表面的显微硬度、耐磨性和耐蚀性,从而延长模具的使用寿命。  相似文献   

3.
以Zr55Al10Ni5Cu30非晶态合金棒为电极,利用电火花沉积技术在ZL101铝合金表面制备了锆基合金涂层.利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和摩擦磨损实验机等对涂层的微观结构、表面形貌、显微硬度和摩擦磨损性能进行了分析测试.结果表明,沉积层表面较致密、均匀,为典型的“溅射状”花样形貌;沉积层主要由非晶、ZrO2和Cu8Zr3等相组成;沉积层的平均显微硬度为1 555 HV 0.01,约为基材的15倍,摩擦系数仅为0.096,呈现出良好的减摩耐磨特性,沉积层的磨损机制主要为疲劳磨损和磨粒磨损.  相似文献   

4.
目的 提高65Mn钢的耐磨性和耐酸碱腐蚀性能。方法 通过真空熔覆技术在65Mn钢表面制备了Ni基-碳化钨(WC)复合涂层,并加入稀土氧化铈(CeO2)改善其微观缺陷。采用扫描电子显微镜(SEM)结合能谱仪(EDS)观察涂层微观结构和元素分布,X射线衍射仪(XRD)测定涂层物相成分,维氏显微硬度计测试涂层硬度。采用带有干涉镜头的摩擦磨损试验机测定涂层的摩擦因数,并通过三维形貌图获取磨痕宽度、深度和体积磨损量,通过磨痕扫描形貌分析摩擦磨损机理。采用电化学工作站分别测试涂层在酸性和碱性腐蚀介质中的电化学性能。结果 涂层以(Ni,Cr,Fe)固溶体、WC及含W增强相的Cr4Ni15W和Ni17W3作为主要的强化相组成。涂层随硬质相WC含量的增加而出现孔洞、裂纹等缺陷,在CeO2的改善作用下,质量分数为30%的WC硬质相涂层组织致密,无明显缺陷,平均显微硬度达900HV1~1 000HV1,是基体硬度的3~4倍;摩擦磨损性能较65Mn钢基体有明显提高,在不同试验条件下,其体积磨损率仅为65Mn钢基体的13.1%~17.4%,但摩擦因数略高于基体。磨痕分...  相似文献   

5.
采用激光熔覆技术在45号钢基材上制备出无裂纹Ni60A涂层,详细研究涂层显微组织的凝固特性、相组成及相分布。系统评估涂层和基材在不同载荷下滑动对磨GCr15球时的高温摩擦磨损行为。结果表明:涂层显微组织均匀致密,主要由γ(Ni)固溶体、大量的Ni-Ni3B网状共晶、小花状M23C6及不均匀分布于枝晶间共晶组织中的黑点状CrB组成;涂层显微硬度约为基材显微硬度的2.6倍;相同载荷条件下,涂层摩擦因数大于基材摩擦因数,但摩擦过程稳定;在较高载荷条件下(300 g),涂层磨损率为基材的1/6.2;基材磨损机制为粘着磨损、磨料磨损、严重塑性变形及氧化磨损,而涂层磨损机制则为轻微的磨粒磨损和中等程度的氧化磨损。  相似文献   

6.
目的 采用热扩散(TD)渗金属技术和物理气相沉积(PVD)技术对45钢表面进行强化,以提升45钢表面硬度和抗磨蚀性能,延长45钢的使用寿命。方法 采用热扩散渗金属技术和物理气相沉积技术制备TD-Cr、PVD-CrN及TD-Cr/PVD-CrN(Cr/CrN复合涂层)3种涂层。利用扫描电镜(SEM)、X 射线衍射仪(XRD)研究涂层的微观形貌、元素分布和物相组成。通过纳米压痕研究涂层的硬度、弹性模量。通过摩擦磨损实验和电化学腐蚀实验,研究涂层的摩擦性能和腐蚀性能。结果 TD-Cr、PVD-CrN、TD-Cr/PVD-CrN 3种涂层的组织结构均致密均匀,厚度分别为19.78、1.075、32.24 μm。TD-Cr/PVD-CrN涂层的硬度达到28.7 GPa,高于其他涂层, 同时,Cr/CrN复合涂层的弹性模量和弹性恢复能力均优于其他涂层。在盐水环境下,TD-Cr、PVD-CrN、TD-Cr/PVD-CrN的摩擦因数分别为0.52、0.38、0.35,磨损体积分别为26、0.15、0.05,TD-Cr/PVD-CrN展现出较好的耐磨性能。在盐水环境下,TD-Cr/PVD-CrN涂层的抗腐蚀性能略低于TD-CrN涂层。结论 综合看来,TD-Cr/PVD-CrN复合涂层可以有效提升45钢的表面抗磨蚀能力,延长其使用寿命。  相似文献   

7.
目的 在低碳钢表面高效制备沉淀硬化马氏体不锈钢涂层,研究涂层在腐蚀磨损苛刻条件下耦合损伤行为。方法 采用热丝激光熔覆技术在20钢基材表面制备17–4PH马氏体不锈钢涂层,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)等分析涂层的相组成和显微组织,采用电化学腐蚀摩擦磨损试验仪对涂层的摩擦磨损、极化曲线、电化学阻抗谱(EIS)及腐蚀磨损耦合行为进行研究。结果 制备的涂层组织均匀、致密,无裂纹、气孔等缺陷,主要由马氏体相组成。熔覆区的平均硬度约为310HV0.1,约是基材硬度的1.5倍,自腐蚀电流密度为6.583×10?8 A/cm2,具有优异的耐蚀性。在3.5%NaCl溶液中,随摩擦载荷的增加,涂层的开路电位下降,摩擦因数增大,自腐蚀电位下降,腐蚀电流密度增大,摩擦对腐蚀促进作用明显。结论 热材激光熔覆技术节能、高效,制备的17–4PH涂层结构致密、性能优异,可用于在腐蚀磨损苛刻环境下零部件的表面改性。  相似文献   

8.
贾彦军  陈瀚宁  张家奇  雷剑波 《表面技术》2022,51(12):350-357, 370
目的 解决Q235钢材料在实际应用中由于磨损、腐蚀导致使用寿命缩短问题,提升Q235钢表面的硬度、耐磨性和耐蚀性。方法 利用激光熔化沉积技术在Q235钢表面制备无裂纹CoCrNiNbW高熵合金涂层。采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其微观组织结构、元素分布和物相成分;采用显微硬度计、试块-试环摩擦磨损试验机分别测试高熵合金涂层和Q235钢的显微硬度和耐磨性能,研究涂层的强化机制和磨损机理;采用电化学工作站测试分析高熵合金涂层和Q235钢的电化学腐蚀行为,研究涂层的耐蚀性和腐蚀机制。结果 CoCrNiNbW高熵合金涂层的微观组织主要由等轴晶组成,涂层中部和底部存在未熔化Nb和W颗粒,起强化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相组成;高熵合金涂层的平均显微硬度为800HV0.2,约为基材的4倍;涂层的磨损机制以磨粒磨损为主,磨损率为2.315´ 10–5 g.m–1,约为基材的1/5;在质量分数3.5%的NaCl溶液中,高熵合金涂层具有更好的耐腐蚀性,腐蚀电阻约为基材的8倍。结论 高熵合金涂层的显微硬度、耐磨性和耐腐蚀性较Q235钢基材有很大提升。  相似文献   

9.
不同气氛下电火花沉积钛合金涂层的组织性能   总被引:2,自引:0,他引:2  
分别在氮气、氩气和空气3种气氛下,在45钢上电火花沉积制备TC4钛合金涂层。利用OM、SEM、EDS、XRD、XPS等对钛合金沉积层的微观形貌、组织结构进行分析;利用纳米力学探针仪测试对比沉积层的力学性能;采用CETR摩擦磨损仪测试涂层的耐磨性。结果表明:氮气下电火花沉积生成含TiN及少量TiO和TiO2的陶瓷增强层。氮气中制取的涂层微裂纹较明显,但几无坑蚀和微孔,表面形貌优于氩气和空气下的沉积层。纳米硬度高达15.18GPa,无需增加沉积层厚度,即可获得较高硬度和抗变形能力。其摩擦因数为0.41,磨损量为2.2mg,均远低于45钢,也低于空气和氩气下制备的普通的钛合金涂层,并且改善了钛合金涂层的粘着磨损。  相似文献   

10.
采用激光熔覆工艺和电火花沉积工艺在Q235钢上熔覆铁基合金粉末和WC陶瓷硬质合金,形成复合涂层.采用X射线衍射仪、扫描电镜、显微硬度计等对复合涂层的相结构、显微组织、显微硬度及耐磨性能进行了分析.结果表明:复合涂层主要是由Fe3W3C、Co3W3C、Si2W、W2C和(Fe0.51Mn0.46 Ni0.03)6C等相组成;复合涂层与基体呈冶金结合,复合涂层中电火花区域中细小的硬质相弥散分布于沉积层中;复合涂层的厚度为140~160 μm,其中电火花沉积区域约为40μm,激光熔覆工艺的涂层厚度为100~120 μm;电火花沉积层的硬度最高可达1262.9 HV,平均硬度为1151.6 HV,电火花沉积区域与激光熔覆区域之间的过渡区域的显微硬度为884.8 HV,激光熔覆区域的显微硬度平均值为578.3 HV;复合涂层的耐磨性较基体耐磨性提高2.3倍,强化层的磨损机理主要是磨粒磨损、粘着磨损和氧化磨损.  相似文献   

11.
氧乙炔火焰喷焊镍基复合涂层的显微组织和腐蚀性能研究   总被引:1,自引:0,他引:1  
目的 研究Ni60和Ni60WC喷焊涂层的显微组织、防腐和耐磨性能及其腐蚀机理,为恶劣工况下服役的零件选择合适的喷焊涂层提供参考.方法 采用氧乙炔火焰喷焊工艺在16Mn钢基体上制备Ni60和Ni60WC涂层,用X射线衍射仪、金相显微镜和扫描电子显微镜分析了喷焊涂层的相结构和显微组织,并采用电化学工作站、盐雾腐蚀试验机、磨粒磨损试验机测试了两种喷焊涂层的防腐和耐磨性能.结果 喷焊层与基体间都存在冶金结合层和热影响区,Ni60涂层的显微组织为NiCr固溶体基体上弥散分布着大量细小粒状和杆状碳化物和硼化物.Ni60WC喷焊涂层组织中,除了具有与Ni60涂层类似的基体相和细颗粒硬质相外,还较均匀地分布着不同尺寸的WC颗粒.Ni60和Ni60WC涂层的磨损率分别为16Mn钢的8.3%和2.3%,自腐蚀电流密度分别为16Mn钢的1.0%和7.6%.另外,基体相和硬质相之间的电偶腐蚀是两种镍基喷焊涂层的主要腐蚀机理.结论 这两种镍基喷焊涂层均能显著提高16Mn钢的抗磨和防腐性能,其中,Ni60喷焊涂层耐腐蚀性更好,Ni60WC喷焊涂层耐磨损性能更好.  相似文献   

12.
为了得到性能更加优异全面的复合镀层,使用复合电沉积技术制备不同石墨烯颗粒大小的Ni-Co-石墨烯复合镀层,并制备了Ni-Co合金镀层。测试镀层的表面形貌,相结构,显微硬度,耐磨性和耐蚀性能。结果显示,石墨烯在电沉积中很好的嵌入到了镀层基质中,而且石墨烯的存在并没有改变镀层基质的晶体结构;石墨烯的填加增加了复合镀层的显微硬度,最高可达805HV;降低了复合镀层的摩擦系数,在一定程度上减少了粘着磨损的面积;复合镀层的自腐蚀电流密度可以降低到1.0905×10-5A/cm2,低于Ni-Co合金镀层的自腐蚀电流密度。说明了石墨烯的添加增强了复合镀层的硬度,耐磨性和耐蚀性。  相似文献   

13.
目的提高医用镁合金微弧氧化涂层的耐蚀性、耐磨性,并赋予涂层抗菌性和生物活性。方法镁合金表面采用超声微弧氧化技术,在镀液中加入0.4、1.4、2.4、3.4 g/L的Na F,制备载氟生物涂层。通过SEM观察载氟对涂层表面形貌的影响,分析涂层的主要元素变化,进行了涂层厚度、孔隙率、拉伸强度的测定,并进行了摩擦磨损实验、电化学腐蚀实验、覆膜抗菌实验,评价了不同载氟生物涂层的结合性能、耐磨性能、耐蚀性和抗菌性。结果适量载氟生物涂层表面分布了均匀的孔隙。随着NaF浓度的增加,涂层中氟元素的含量升高,涂层厚度也随之增加,且涂层的结合强度提高了3.5~10.0 MPa。氟元素可促进涂层表面氧化物反应膜的形成,有利于减轻粘着磨损,使摩擦系数降低了0.17~0.35。载氟涂层的自腐蚀电位提高了95~170 m V,而自腐蚀电流降低约两个数量级,涂层抗菌率为61%~76%。结论超声微弧氧化镀液中添加Na F,提高了涂层结合强度、耐磨性、耐腐蚀性,涂层具有一定的抗菌性,实现了生物涂层的多功能性。  相似文献   

14.
目的研究碳纳米管对Ni-P化学镀层组织与性能的影响。方法将碳纳米管(CNTs)加入到镀液中,采用化学镀的方法在45#钢表面制得碳纳米管-镍磷化学复合镀层。利用扫描电镜、X射线衍射仪综合分析复合镀层的表面形貌和结构,并采用多功能材料表面性能测试仪对复合镀层的摩擦磨损性能进行了研究。利用动电位极化技术对Ni-P-CNTs复合镀层在3.5%NaCl溶液中的电化学腐蚀行为进行了研究。结果Ni-P-CNTs化学复合镀层是非晶态结构,CNTs均匀地嵌埋在基质镀层中。在耐磨性试验中,Ni-P-CNTs复合镀层的磨损率比Ni-P镀层降低了7.6×10~(-11) m~3/(N·m),而平均摩擦因数减小了0.074。在电化学腐蚀试验中,Ni-P-CNTs复合镀层的腐蚀电位比Ni-P镀层正移了222 mV,而腐蚀电流密度降低了5.234×10~(-6) A/cm~2。结论碳纳米管填补了镍磷非晶胞间的间隙,改善了复合镀层的组织结构,使Ni-P-CNTs化学复合镀层具有更好的耐摩擦磨损性能和耐腐蚀性能。  相似文献   

15.
A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaC1 solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10^-3 mm^3/m and 0.13-0.177, 3.056×10^-4 mm^3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.  相似文献   

16.
为增强传统环氧树脂涂料的耐腐蚀性能,将改性石墨烯与涂料复合,制备了不同石墨烯含量的复合涂层。利用扫描电子显微镜(SEM)、接触角测定仪、显微红外光谱仪、热重分析仪、多功能表面测试仪等表征了添加不同含量石墨烯涂层前后的截面形貌、接触角、耐热性能以及摩擦磨损性能;采用电化学阻抗谱(EIS)、极化曲线研究涂层浸泡在3.5%Na Cl溶液中的电化学行为,并通过中性盐雾试验测试不同石墨烯含量涂层的耐盐雾腐蚀性能。结果表明:当石墨烯添加量为1%时,涂层各方面性能相对最佳。与未添加改性石墨烯涂层相比,改性石墨烯涂层的接触角增加5°,疏水性能增加;平均摩擦因数从0.28降至0.08,耐磨损性能提高;自腐蚀电流减小,自腐蚀电位正移耐腐蚀性能显著增强;1 800 h盐雾试验中1%石墨烯涂料样板未发生明显腐蚀。  相似文献   

17.
Alumina coatings were deposited on Al alloy substrates using an electrolytic plasma technique, based on a dielectric barrier discharge created during anodic oxidation in an aqueous electrolyte. The substrate material (BS Al 6082) was biased anodically with an unbalanced AC high voltage. During processing, a plasma current density of 100 mA/cm2 was used, at which a coating deposition rate of 1.67 μm/min was achieved. Coating abrasive wear and corrosion properties were assessed by conducting dry and wet rubber wheel abrasive tests and potentiodynamic polarization experiments, respectively. X-Ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate the coating microstructure, and the coating/substrate interface. The property test results show that the coatings possess excellent abrasive wear and corrosion resistance. XRD analyses indicate that the coatings consist of α- and γ-Al2O3. An amorphous+nanocrystalline inner layer (1.5-μm thick) and a nanocrystalline (50–60 nm) intermediate layer in the coating were observed by TEM. The higher resistance to wear and corrosion can in part be attributed to the presence of these interlayers.  相似文献   

18.
目的通过优化涂层制备工艺,制备致密的Fe基非晶合金涂层,以提高非晶合金涂层的耐磨性。方法采用活性燃烧高速燃气超音速火焰喷涂(AC-HVAF)技术,通过工艺优化,制备了组织致密的Fe基非晶合金涂层。利用场发射扫描电子显微镜、X射线衍射仪、维氏显微硬度计、摩擦磨损试验机、三维光学轮廓仪等设备,对非晶合金涂层的组织结构、摩擦性能和磨损机制进行了深入分析。结果 Fe基非晶合金涂层呈现典型的非晶结构,涂层厚度在300μm左右,涂层的平均显微硬度值高达1000HV0.1。在干摩擦试验条件下,Fe基非晶合金涂层的磨损量远低于304不锈钢材料,磨损率是304不锈钢基体的1/3~1/2。Fe基非晶合金涂层的磨损机制以疲劳磨损为主,伴随着氧化磨损。氧化磨损主要是由干摩擦过程中产生的摩擦热导致,氧化磨损加速了片层剥落。结论 Fe基非晶合金涂层孔隙率的降低和非晶相含量的提高,有利于稳定摩擦系数和改善涂层的耐磨损性能。  相似文献   

19.
采用高速激光熔覆技术在Mg-Gd-Y-Zr镁合金表面制备Al-Si涂层。通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)以及电化学分析测试、摩擦磨损测试对熔覆层的微观组织及性能进行表征,研究了基体与Al-Si涂层的冶金机理以及耐磨耐蚀能力。结果表明,熔覆层组织包括树枝状α-Mg固溶体、不规则块状Mg2Si、α-Mg+Al12Mg17共晶以及花瓣状组织Al3Mg2。由于细晶强化和第二相强化等原因,Al-Si涂层的硬度达到160 HV0.1。此外,与镁合金基体相比,Al-Si涂层的耐腐蚀性能显著提高,自腐蚀电位相比基体提高约200 mV,自腐蚀电流密度降低2个数量级,抗磨损效果提高30.7%,因此Al-Si涂层有望成为稀土镁合金更有前景的耐磨耐蚀防护涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号