首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
采用DIL805淬火膨胀仪、金相显微镜及显微硬度计,研究了ES355Al钢连续冷却过程的相变及组织转变规律,分析了冷却速率对ES355Al钢相变及组织演变的影响。结果表明:过冷奥氏体在冷却过程中发生铁素体转变、珠光体转变、贝氏体转变和马氏体转变。在冷速为0.2~1℃/s时,发生铁素体析出和珠光体转变;在冷速为2~7℃/s时,发生铁素体析出、珠光体转变和贝氏体转变,其中7℃/s为珠光体转变结束的临界冷速;,2℃/s、15℃/s分别为贝氏体、马氏体开始转变的临界冷速。ES355Al钢的显微硬度随着冷速增加而增加,由冷速0.2℃/s时的170 HV5增加到20℃/s时的350 HV5。  相似文献   

2.
通过Gleeble热模拟机测定热轧圆钢以不同速度连续冷却到室温的膨胀曲线,结合金相组织和硬度试验,绘制出一种高耐磨合金钢的CCT曲线,并分析不同冷速对组织演变的影响。结果表明:当冷速在0.05~0.1℃/s时,转变产物为铁素体+珠光体;当冷速为0.15℃/s时,转变产物为铁素体+珠光体+少量的贝氏体组织;当冷速为0.2~0.35℃/s时,转变产物为铁素体+珠光体+贝氏体+马氏体;当冷速为0.5~1.5℃/s时,转变产物为贝氏体+少量的马氏体;当冷速大于2℃/s时,转变产物全为马氏体。  相似文献   

3.
利用膨胀法结合金相-硬度法,在Formast-F全自动相变仪上测定了60mm厚Q690D钢连续冷却转变静态CCT曲线,研究了冷却速度对显微组织、硬度的影响。结果表明:当冷速小于1℃/s时,转变产物为铁素体、珠光体和贝氏体;当冷速为1~3℃/s,转变产物为铁素体、贝氏体;当冷速为5~40℃/s,转变产物为贝氏体、马氏体;当冷速大于40℃/s时,转变产物为完全马氏体;当冷速小于20℃/s时,显微硬度逐渐升高;当冷速在20~100℃/s时,显微硬度在390 HV左右。  相似文献   

4.
利用DIL805L淬火相变膨胀仪研究了齿轮钢16Mn Cr的过冷奥氏体连续冷却转变行为,结合金相-硬度法,绘制静态CCT曲线。结果表明:试验钢在冷速小于0.2℃/s时,室温下获得铁素体+珠光体组织,冷速大于0.5℃/s,室温下试验钢中出现贝氏体组织,冷速大于5℃/s,试验钢中出现马氏体组织;随着冷速的增加,铁素体、珠光体减少,铁素体的形态由多边形向针状发展,硬度由146 HV30增大至380 HV30。由于Mo推迟了铁素体、珠光体转变,降低了获得铁素体的临界冷速,试验钢获得铁素体+珠光体组织的冷速范围较窄。  相似文献   

5.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。  相似文献   

6.
在实验室利用Gleeble-3500热模拟试验机对Nb-V微合金化H型钢进行了连续冷却转变与形变热模拟试验,研究了形变温度和冷却速度对试验钢组织和力学性能的影响。结果表明:连续冷却转变过程中,冷速为1 ℃/s时,组织中开始出现少量贝氏体;冷速大于7 ℃/s时,不发生珠光体转变;冷速为15 ℃/s时,不发生铁素体转变。形变热模拟条件下,冷速≤1 ℃/s时,形变未改变试验钢的组织类型,其组织均为铁素体+珠光体;冷速为5~10 ℃/s时,形变显著改变试验钢的组织形态;形变温度越低,其组织中铁素体含量越高,铁素体与贝氏体组织越细小;形变温度为800~850 ℃,冷速控制在3~5 ℃/s时,试验钢可获得强韧性较好的细小准多边形铁素体与贝氏体的复合组织。  相似文献   

7.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

8.
利用淬火变形膨胀仪(DIL805A),结合金相显微分析和显微硬度测量,研究了冷却速率(0.2~75 ℃/s)对10B21冷镦钢过冷奥氏体连续冷却转变的影响.用光学显微镜和扫描电镜观察试验钢在不同冷却条件下的显微组织,研究了不同冷速对钢的组织和硬度的影响,绘制了其CCT曲线.结果表明,10B21钢连续冷却过程中,冷速为0.2~15 ℃/s时,组织为铁素体、珠光体;当冷速≥20 ℃/s时,开始出现羽毛状贝氏体;冷速为45~60 ℃/s时,主要是羽毛状的上贝氏体;冷速为75 ℃/s时,主要是板条马氏体.  相似文献   

9.
利用DIL805A膨胀仪测定了ER70S-G钢的过冷奥氏体连续冷却转变(CCT)曲线,并结合金相-硬度法确定过冷奥氏体在不同冷却速率下的组织转变。结果表明,ER70S-G钢连续冷却过程中,冷速在0.1~0.6 ℃/s范围内时,组织为铁素体+珠光体;冷速为0.8 ℃/s时,组织为铁素体+珠光体+贝氏体;冷速在1~20.0 ℃/s范围内时,组织为铁素体+贝氏体。  相似文献   

10.
针对热煨弯管的热处理工艺特点,采用Gleeble 3800进行了X100管线钢的连续冷却相变规律研究。利用热膨胀法,结合金相和硬度分析,绘制了X100管线钢的CCT曲线。研究了不同冷却速率对相变温度、组织和硬度的影响。结果表明:随冷却速率的不断提高,组织逐渐从多边形铁素体向准多边形铁素体、粒状贝氏体、贝氏体铁素体转变。冷速为0.1℃/s时,组织为多边形铁素体+少量珠光体;冷速达到50℃/s时,组织为贝氏体铁素体。晶粒尺寸和板条亚结构的细化、切变型组织比例的增加,是硬度随冷速提高而增加的主要原因。  相似文献   

11.
利用膨胀法并结合金相-硬度法对研制的一种低屈强比高强耐候钢进行了奥氏体连续冷却转变(CCT)曲线测定,并对其力学性能和耐蚀性能进行了研究。结果表明:该试验钢抗拉强度达575 MPa,屈强比为0.75,冲击性能优良,耐蚀性明显优于Q345B钢;当奥氏体化后的试验钢以0.1~100 ℃/s冷却速率冷却至室温时,随冷却速率增加其显微硬度由131 HV0.5增加至218 HV0.5;其中当冷却速率小于1 ℃/s时,其组织由铁素体+珠光体构成;当冷却速率为1~20 ℃/s时,其组织由铁素体+珠光体+贝氏体构成;当冷却速率为20~100 ℃/s时,珠光体消失,其组织主要由铁素体+贝氏体构成。  相似文献   

12.
利用膨胀法结合金相-显微硬度法,在Glebble-3500热模拟试验机对Q355D热轧H型钢的连续冷却转变规律进行研究,并绘制了静态连续冷却转变曲线(CCT曲线)。结果表明,从CCT曲线可以看出,在冷速小于1℃/s时,组织是铁素体和珠光体,冷速在1~10℃/s时,组织为铁素体+珠光体+贝氏体,冷速在20~50℃/s时,组织为针状铁素体+贝氏体+马氏体;随着冷却速率的增大,Q355D热轧H型钢的硬度增大,硬度由171 HV0.2增大至301 HV0.2。依据CCT曲线来制定不同轧制试验方案,当总压下量为75%、应变速率0.3 s-1、变形温度1150℃时,试验钢铁素体晶粒尺寸为8.13μm,-20℃冲击吸收能量为146 J,性能最优。  相似文献   

13.
为了掌握Cr-Ni-Cu桥梁耐候钢在连续冷却过程中组织及硬度的变化及其原因,借助JMatPro软件模拟计算了连续冷却转变(CCT)曲线和等温转变(TTT)曲线,采用Gleeble-3800热模拟试验机、金相显微镜、扫描电镜和硬度计等试验手段研究了Cr-Ni-Cu桥梁耐候钢在不同冷却速度下的微观组织和硬度的变化,探讨了冷却速度对组织、硬度及相变行为的影响。结果表明,对Cr-Ni-Cu桥梁耐候钢进行1050℃和860℃两阶段高温变形后,随着冷却速度由0.1℃/s增加至30℃/s,组织依次为多边形铁素体+珠光体→多边形铁素体+贝氏体→粒状贝氏体→粒状贝氏体+马氏体,硬度由155 HV0.2增加至373 HV0.2。当冷却速度由0.1℃/s增加至3℃/s,硬度的增加主要是由于多边形铁素体晶粒的细化。当冷却速度由5℃/s增加至30℃/s,硬度的增大主要来自于贝氏体组织的不断细化和马氏体含量的不断增加。  相似文献   

14.
针对当前不含Mo 低成本900 MPa级工程机械用钢的生产,采用Formastor-FⅡ相变仪,研究了900 MPa级工程机械用钢的连续冷却相变行为,分析了试验钢在连续冷却条件下的显微组织、显微硬度变化规律和贝氏体相变过程;结合热膨胀法和金相-硬度法绘制了试验钢的连续冷却转变曲线。结果表明:当冷却速率为0.25~0.5 ℃/s时,试验钢组织主要为铁素体和粒状贝氏体;冷却速率为1~2 ℃/s时,试验钢组织由粒状贝氏体和板条贝氏体组成;冷却速率为5~20 ℃/s时,试验钢组织为板条贝氏体和互锁状贝氏体,随着冷却速率的提高,板条贝氏体相变温度区间变窄,互锁状贝氏体相变温度区间变宽。冷却速率为5 ℃/s时,以板条贝氏体相变为主导,晶界形核速率高于晶内形核速率;冷却速率为10~20 ℃/s时,以互锁状贝氏体相变为主导,晶内形核速率高于晶界形核速率。冷却速率为0.25~2 ℃/s时,试验钢显微硬度随着冷却速率的增加而增加,硬度值从188HV升高到239HV;冷却速率为2~5 ℃/s时,出现硬度平台;冷却速率为5~20 ℃/s时,试验钢显微硬度随冷却速率的增加而增加,硬度值从240HV升高到270HV。  相似文献   

15.
为进一步优化非调质NM400复相耐磨钢不同组织配比,利用Gleeble-3800热模拟试验机探究了试验钢在连续冷却条件下的组织转变规律,并结合金相法和硬度法,绘制出试验钢的动态连续冷却转变(CCT)曲线。结果表明,当冷速低于1 ℃/s时,试验钢组织为铁素体+粒状贝氏体+珠光体,部分粗大的原奥氏体晶粒转变为粒状贝氏体和珠光体。在冷却速率为5~40 ℃/s时,试验钢不再发生珠光体转变,显微组织均为铁素体+贝氏体+马氏体。并随着冷速的增加,马氏体含量不断增加,硬度升高;此外,不同分段冷却方案下,较低的中冷温度以及较长的空冷时间均有利于铁素体和贝氏体的转变。同时,残留奥氏体含量则随铁素体含量的增大而增大;由于试验钢的Ms点较高,马氏体板条较宽,并且有自回火现象发生。  相似文献   

16.
采用 Gleeble-3800热模拟试验机对EH460船板钢进行1050 ℃下变形30%和850 ℃下变形30%的双道次压缩试验。绘制了在不同冷速下连续冷却过程中钢的膨胀曲线,并在光学显微镜下观察了不同冷速下试样的室温组织。结合膨胀法与金相法,利用 Origin 8.0软件绘制了船板钢的动态 CCT 曲线。结果表明,当冷速为0.1~3 ℃/s 时,所得室温组织主要是铁素体和珠光体;当冷速大于5 ℃/s 时,出现粒状贝氏体组织,随着冷速的增加贝氏体逐渐增多,铁素体与珠光体逐渐减少;当冷速为10~15 ℃/s 时,珠光体消失,组织为铁素体与粒状贝氏体;随着冷速进一步增到 20~50 ℃/s 时不再发生铁素体相变,仅为粒状贝氏体组织。  相似文献   

17.
运用膨胀法同时结合显微组织观察及硬度测试确定了一种矿山机械用贝氏体耐磨铸钢的连续冷却转变曲线。结果表明:该矿山机械用贝氏体耐磨铸钢的Ac1、Ac3、Ms分别约为790、845和303 ℃;当冷却速度低于0.05 ℃/s时,组织为铁素体和珠光体;当冷却速度介于0.05 ~0.1 ℃/s之间时,组织为铁素体+珠光体+贝氏体;当冷却速度在0.25~15 ℃/s之间,为贝氏体+马氏体复相组织;当冷却速度大于30 ℃/s时,奥氏体几乎全转变为马氏体组织;马氏体临界转变速度在15~30 ℃/s之间。随着冷却速度的增加,显微硬度先快速增加后趋于585 HV0.01。  相似文献   

18.
通过热模拟试验、光学和扫描电镜(SEM)观察以及维氏硬度测试,研究了0.6Ni中碳合金钢的动态和静态奥氏体连续冷却转变规律,分析了变形以及合金元素Ni对中碳合金钢奥氏体转变行为的影响。结果表明:奥氏体变形有效抑制了0.6Ni中碳合金钢连续冷却后铁素体和珠光体的形成,大幅促进了贝氏体和马氏体相变,将全马氏体临界冷速由5 ℃/s降低到3 ℃/s。试验钢在动态连续冷却条件下,冷速为3 ℃/s时,全马氏体组织显微硬度为810 HV0.1;而静态连续冷却条件下,冷速为5 ℃/s时,全马氏体组织显微硬度为689 HV0.1。奥氏体变形的再结晶细化作用可以明显细化冷却后的马氏体组织,进而提高马氏体的硬度。在奥氏体静态连续冷却条件下,中碳合金钢中0.6Ni元素的加入,抑制了铁素体和珠光体相变,大幅促进贝氏体和马氏体相变,提高了奥氏体的稳定性,将Ms点从329 ℃降低到304 ℃,马氏体临界冷速从0.5 ℃/s降低到0.3 ℃/s;相对于约0.4Mn元素的加入,0.6Ni元素的加入可以大幅抑制铁素体和珠光体相变,可以将Ms点从320 ℃降低到304 ℃,同时可以有效细化奥氏体冷却后的显微组织。  相似文献   

19.
采用热模拟试验机研究了添加Ni、Cr、Cu的车厢用微合金化耐候钢的过冷奥氏体连续冷却相变行为,并建立了试验钢的静态和动态CCT曲线。结果表明,在无变形条件下,试验钢在各冷速下均不能获得全铁素体组织,冷却速率为0.2 ℃/s时,室温组织中的铁素体含量最高,为41%,平均晶粒尺寸为36.9 μm;在施加30%变形量的条件下,试验钢在0.2 ℃/s冷速下可获得全铁素体+极少量珠光体组织,平均晶粒尺寸为17.9 μm,具有较好的耐腐蚀能力。当冷却速率在0.2~0.5 ℃/s之间(铁素体+珠光体相变区间),提高冷却速率可以增加试验钢的硬度,在施加30%变形量和0.2 ℃/s冷却速率条件下,试验钢的宏观硬度值达181 HV30。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号